no code implementations • NAACL (PrivateNLP) 2021 • Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia Erell, Alon Peled-Cohen, Itay Laish, Hootan Nakhost, Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim, Yossi Matias
One method to guarantee the privacy of such individuals is to train a differentially-private language model, but this usually comes at the expense of model performance.
no code implementations • 2 Feb 2023 • Eyal Molad, Eliahu Horwitz, Dani Valevski, Alex Rav Acha, Yossi Matias, Yael Pritch, Yaniv Leviathan, Yedid Hoshen
Our approach uses a video diffusion model to combine, at inference time, the low-resolution spatio-temporal information from the original video with new, high resolution information that it synthesized to align with the guiding text prompt.
no code implementations • 26 Dec 2022 • Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Scharli, Aakanksha Chowdhery, Philip Mansfield, Blaise Aguera y Arcas, Dale Webster, Greg S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral, Christopher Semturs, Alan Karthikesalingam, Vivek Natarajan
To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars.
Ranked #1 on
Question Answering
on MedQA-USMLE
no code implementations • 30 Nov 2022 • Yaniv Leviathan, Matan Kalman, Yossi Matias
Inference from large autoregressive models like Transformers is slow - decoding K tokens takes K serial runs of the model.
1 code implementation • 17 Oct 2022 • Dani Valevski, Matan Kalman, Yossi Matias, Yaniv Leviathan
We present UniTune, a simple and novel method for general text-driven image editing.
no code implementations • 25 Jul 2022 • Deborah Cohen, MoonKyung Ryu, Yinlam Chow, Orgad Keller, Ido Greenberg, Avinatan Hassidim, Michael Fink, Yossi Matias, Idan Szpektor, Craig Boutilier, Gal Elidan
Despite recent advances in natural language understanding and generation, and decades of research on the development of conversational bots, building automated agents that can carry on rich open-ended conversations with humans "in the wild" remains a formidable challenge.
no code implementations • 19 Jul 2022 • Boris Babenko, Ilana Traynis, Christina Chen, Preeti Singh, Akib Uddin, Jorge Cuadros, Lauren P. Daskivich, April Y. Maa, Ramasamy Kim, Eugene Yu-Chuan Kang, Yossi Matias, Greg S. Corrado, Lily Peng, Dale R. Webster, Christopher Semturs, Jonathan Krause, Avinash V. Varadarajan, Naama Hammel, Yun Liu
On validation sets B and C, with substantial patient population differences compared to the development sets, the DLS outperformed the baseline for ACR>=300 and Hgb<11 by 7. 3-13. 2%.
1 code implementation • NAACL 2022 • Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas Scialom, Idan Szpektor, Avinatan Hassidim, Yossi Matias
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability.
no code implementations • 4 Nov 2021 • Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, Yossi Matias
During the 2021 monsoon season, the flood warning system was operational in India and Bangladesh, covering flood-prone regions around rivers with a total area of 287, 000 km2, home to more than 350M people.
no code implementations • NeurIPS 2021 • Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, Samson Zhou
In this paper, we introduce adversarially robust streaming algorithms for central machine learning and algorithmic tasks, such as regression and clustering, as well as their more general counterparts, subspace embedding, low-rank approximation, and coreset construction.
1 code implementation • NeurIPS 2021 • Niv Giladi, Zvika Ben-Haim, Sella Nevo, Yossi Matias, Daniel Soudry
Background: Floods are the most common natural disaster in the world, affecting the lives of hundreds of millions.
no code implementations • 29 Nov 2020 • Sella Nevo, Gal Elidan, Avinatan Hassidim, Guy Shalev, Oren Gilon, Grey Nearing, Yossi Matias
Floods are among the most common and deadly natural disasters in the world, and flood warning systems have been shown to be effective in reducing harm.
no code implementations • NeurIPS 2020 • Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer
A streaming algorithm is said to be adversarially robust if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an adaptive adversary.
no code implementations • 23 Jan 2020 • Daniel Freedman, Yochai Blau, Liran Katzir, Amit Aides, Ilan Shimshoni, Danny Veikherman, Tomer Golany, Ariel Gordon, Greg Corrado, Yossi Matias, Ehud Rivlin
Our coverage algorithm is the first such algorithm to be evaluated in a large-scale way; while our depth estimation technique is the first calibration-free unsupervised method applied to colonoscopies.
no code implementations • 27 Oct 2019 • Yotam Gigi, Ami Wiesel, Sella Nevo, Gal Elidan, Avinatan Hassidim, Yossi Matias
In this scenario sharing a low-rank component between the tasks translates to a shared spectral reflection of the water, which is a true underlying physical model.
1 code implementation • 31 Jul 2019 • Joel Shor, Dotan Emanuel, Oran Lang, Omry Tuval, Michael Brenner, Julie Cattiau, Fernando Vieira, Maeve McNally, Taylor Charbonneau, Melissa Nollstadt, Avinatan Hassidim, Yossi Matias
In this paper, we present and evaluate finetuning techniques to improve ASR for users with non-standard speech.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • NAACL 2019 • Ido Cohn, Itay Laish, Genady Beryozkin, Gang Li, Izhak Shafran, Idan Szpektor, Tzvika Hartman, Avinatan Hassidim, Yossi Matias
To this end, we define the task of audio de-ID, in which audio spans with entity mentions should be detected.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
no code implementations • ICLR 2019 • Eliav Buchnik, Edith Cohen, Avinatan Hassidim, Yossi Matias
We make a principled argument for the properties of our arrangements that accelerate the training and present efficient algorithms to generate microbatches that respect the marginal distribution of training examples.
no code implementations • 17 Mar 2019 • Ido Cohn, Itay Laish, Genady Beryozkin, Gang Li, Izhak Shafran, Idan Szpektor, Tzvika Hartman, Avinatan Hassidim, Yossi Matias
To this end, we define the task of audio de-ID, in which audio spans with entity mentions should be detected.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
no code implementations • 13 Feb 2019 • Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer
We present differentially private efficient algorithms for learning union of polygons in the plane (which are not necessarily convex).
no code implementations • 28 Jan 2019 • Sella Nevo, Vova Anisimov, Gal Elidan, Ran El-Yaniv, Pete Giencke, Yotam Gigi, Avinatan Hassidim, Zach Moshe, Mor Schlesinger, Guy Shalev, Ajai Tirumali, Ami Wiesel, Oleg Zlydenko, Yossi Matias
We propose to build on these strengths and develop ML systems for timely and accurate riverine flood prediction.
no code implementations • 3 Jan 2019 • Yotam Gigi, Gal Elidan, Avinatan Hassidim, Yossi Matias, Zach Moshe, Sella Nevo, Guy Shalev, Ami Wiesel
We demonstrate the efficacy of our approach for the problem of discharge estimation using simulations.
no code implementations • ICLR 2019 • Eliav Buchnik, Edith Cohen, Avinatan Hassidim, Yossi Matias
Optimization of machine learning models is commonly performed through stochastic gradient updates on randomly ordered training examples.