no code implementations • 10 Dec 2022 • Wenwei Luo, Wanguang Yin, Quanying Liu, Youzhi Qu
The key to electroencephalography (EEG)-based brain-computer interface (BCI) lies in neural decoding, and its accuracy can be improved by using hybrid BCI paradigms, that is, fusing multiple paradigms.
no code implementations • 8 Oct 2022 • Ziyuan Ye, Youzhi Qu, Zhichao Liang, Mo Wang, Quanying Liu
The results show that STpGCN significantly improves brain decoding performance compared to competing baseline models; BrainNetX successfully annotates task-relevant brain regions.
no code implementations • 7 Jun 2022 • Youzhi Qu, Xinyao Jian, Wenxin Che, Penghui Du, Kai Fu, Quanying Liu
Transfer learning improves the performance of the target task by leveraging the data of a specific source task: the closer the relationship between the source and the target tasks, the greater the performance improvement by transfer learning.
no code implementations • 18 May 2021 • Shuhan Zheng, Zhichao Liang, Youzhi Qu, Qingyuan Wu, Haiyan Wu, Quanying Liu
Here, we propose a physics-based framework of Kuramoto model to investigate oxytocin effects on the phase dynamic neural coupling in DMN and FPN.
no code implementations • 18 Jan 2021 • Wanguang Yin, Youzhi Qu, Zhengming Ma, Quanying Liu
However, most of tensor decomposition methods are the linear feature extraction techniques, which are unable to reveal the nonlinear structure within high-dimensional data.