no code implementations • 30 Mar 2025 • Jing Zhu, Mingxuan Ju, Yozen Liu, Danai Koutra, Neil Shah, Tong Zhao
Generative recommendation (GR) has become a powerful paradigm in recommendation systems that implicitly links modality and semantics to item representation, in contrast to previous methods that relied on non-semantic item identifiers in autoregressive models.
1 code implementation • 23 Dec 2024 • Xinyi Wu, Donald Loveland, Runjin Chen, Yozen Liu, Xin Chen, Leonardo Neves, Ali Jadbabaie, Clark Mingxuan Ju, Neil Shah, Tong Zhao
To tackle this challenge, hashing techniques are often employed to map multiple entities to the same embedding and thus reduce the size of the embedding tables.
no code implementations • 23 Sep 2024 • Matthew Kolodner, Mingxuan Ju, Zihao Fan, Tong Zhao, Elham Ghazizadeh, Yan Wu, Neil Shah, Yozen Liu
In light of these two challenges, we evaluate using a robust training objective, specifically SSMTL, through a large-scale friend recommendation system on a social media platform in the tech sector, identifying whether this increase in robustness can work at scale in enhancing retrieval in the production setting.
1 code implementation • 27 Mar 2024 • Mingxuan Ju, William Shiao, Zhichun Guo, Yanfang Ye, Yozen Liu, Neil Shah, Tong Zhao
A branch of research enhances CF methods by message passing used in graph neural networks, due to its strong capabilities of extracting knowledge from graph-structured data, like user-item bipartite graphs that naturally exist in CF.
no code implementations • 27 Mar 2024 • William Shiao, Mingxuan Ju, Zhichun Guo, Xin Chen, Evangelos Papalexakis, Tong Zhao, Neil Shah, Yozen Liu
This work focuses on a complementary problem: recommending new users and items unseen (out-of-vocabulary, or OOV) at training time.
1 code implementation • 20 Mar 2024 • Zhihan Zhou, Qixiang Fang, Leonardo Neves, Francesco Barbieri, Yozen Liu, Han Liu, Maarten W. Bos, Ron Dotsch
Furthermore, we introduce a novel training objective named future W-behavior prediction to transcend the limitations of next-token prediction by forecasting a broader horizon of upcoming user behaviors.
1 code implementation • 15 Feb 2024 • Zhichun Guo, Tong Zhao, Yozen Liu, Kaiwen Dong, William Shiao, Neil Shah, Nitesh V. Chawla
Graph Neural Networks (GNNs) are prominent in graph machine learning and have shown state-of-the-art performance in Link Prediction (LP) tasks.
no code implementations • 19 Dec 2023 • Qixiang Fang, Zhihan Zhou, Francesco Barbieri, Yozen Liu, Leonardo Neves, Dong Nguyen, Daniel L. Oberski, Maarten W. Bos, Ron Dotsch
Learning general-purpose user representations based on user behavioral logs is an increasingly popular user modeling approach.
1 code implementation • 18 Dec 2023 • Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, Tong Zhao
As such, a key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism that encompasses a 4-hop reception field, but achieved through just 2-hop operations.
no code implementations • 23 Oct 2023 • Heinrich Peters, Yozen Liu, Francesco Barbieri, Raiyan Abdul Baten, Sandra C. Matz, Maarten W. Bos
The success of online social platforms hinges on their ability to predict and understand user behavior at scale.
no code implementations • 12 Jun 2023 • William Shiao, Uday Singh Saini, Yozen Liu, Tong Zhao, Neil Shah, Evangelos E. Papalexakis
CARL-G is adaptable to different clustering methods and CVIs, and we show that with the right choice of clustering method and CVI, CARL-G outperforms node classification baselines on 4/5 datasets with up to a 79x training speedup compared to the best-performing baseline.
1 code implementation • 25 Nov 2022 • William Shiao, Zhichun Guo, Tong Zhao, Evangelos E. Papalexakis, Yozen Liu, Neil Shah
In this work, we extensively evaluate the performance of existing non-contrastive methods for link prediction in both transductive and inductive settings.
no code implementations • 11 Oct 2022 • Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V. Chawla, Neil Shah, Tong Zhao
In this work, to combine the advantages of GNNs and MLPs, we start with exploring direct knowledge distillation (KD) methods for link prediction, i. e., predicted logit-based matching and node representation-based matching.
1 code implementation • 7 Oct 2022 • Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, Neil Shah
In this work, we provide a data-centric view to tackle these issues and propose a graph transformation framework named GTrans which adapts and refines graph data at test time to achieve better performance.
2 code implementations • 30 Sep 2022 • Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, Neil Shah
Training graph neural networks (GNNs) on large graphs is complex and extremely time consuming.
no code implementations • 17 Sep 2022 • Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, Neil Shah
However, HadamardMLP lacks the scalability for retrieving top scoring neighbors on large graphs, since to the best of our knowledge, there does not exist an algorithm to retrieve the top scoring neighbors for HadamardMLP decoders in sublinear complexity.
1 code implementation • 17 Feb 2022 • Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah, Meng Jiang
Overall, our work aims to clarify the landscape of existing literature in graph data augmentation and motivates additional work in this area, providing a helpful resource for researchers and practitioners in the broader graph machine learning domain.
1 code implementation • 28 Jan 2022 • Shichang Zhang, Yozen Liu, Neil Shah, Yizhou Sun
Explaining machine learning models is an important and increasingly popular area of research interest.
1 code implementation • ICLR 2022 • Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah
Conversely, multi-layer perceptrons (MLPs) have no graph dependency and infer much faster than GNNs, even though they are less accurate than GNNs for node classification in general.
Ranked #5 on
Node Classification
on AMZ Computers
2 code implementations • ICLR 2022 • Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah
Given the prevalence of large-scale graphs in real-world applications, the storage and time for training neural models have raised increasing concerns.
1 code implementation • 5 Oct 2020 • Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, Neil Shah
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models including GCN, GAT, PPNP, and APPNP can be regarded as (approximately) solving a graph denoising problem with a smoothness assumption.
2 code implementations • 11 Jun 2020 • Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, Neil Shah
Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction.
Ranked #1 on
Node Classification
on Flickr
no code implementations • 10 Jun 2020 • Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, Suhang Wang
In this paper, we study a novel problem of explainable user engagement prediction for social network Apps.
1 code implementation • 2 Jun 2019 • Yozen Liu, Xiaolin Shi, Lucas Pierce, Xiang Ren
Here we propose to formalize individual user's in-app action transition patterns as a temporally evolving action graph, and analyze its characteristics in terms of informing future user engagement.