1 code implementation • 24 Jan 2022 • Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing Li, Jie Ren, Ding Xue, Houtim Lai, Shaoyong Xu, Jing Feng, Wei Liu, Ping Luo, Shuigeng Zhou, Junzhou Huang, Peilin Zhao, Yatao Bian
AI-aided drug discovery (AIDD) is gaining increasing popularity due to its promise of making the search for new pharmaceuticals quicker, cheaper and more efficient.
1 code implementation • 8 Jul 2021 • Lingyun Wu, Zhiqiang Hu, Yuanfeng Ji, Ping Luo, Shaoting Zhang
For example, STFT improves the still image baseline FCOS by 10. 6% and 20. 6% on the comprehensive F1-score of the polyp localization task in CVC-Clinic and ASUMayo datasets, respectively, and outperforms the state-of-the-art video-based method by 3. 6% and 8. 0%, respectively.
1 code implementation • 28 Jun 2021 • Yuanfeng Ji, Ruimao Zhang, Huijie Wang, Zhen Li, Lingyun Wu, Shaoting Zhang, Ping Luo
The recent vision transformer(i. e. for image classification) learns non-local attentive interaction of different patch tokens.
no code implementations • 10 Jun 2021 • Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, AnnetteKopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Goli Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, Henkjan Huisman, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Namkug Kim, Ildoo Kim, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Segmentation is so far the most widely investigated medical image processing task, but the various segmentation challenges have typically been organized in isolation, such that algorithm development was driven by the need to tackle a single specific clinical problem.
1 code implementation • NeurIPS 2020 • Dingguo Shen, Yuanfeng Ji, Ping Li, Yi Wang, Di Lin
In contrast to the previous methods, RANet configures the information pathways between the pixels in different regions, enabling the region interaction to exchange the regional context for enhancing all of the pixels in the image.
no code implementations • 16 Sep 2020 • Yuanfeng Ji, Ruimao Zhang, Zhen Li, Jiamin Ren, Shaoting Zhang, Ping Luo
Unlike the recent neural architecture search (NAS) methods that typically searched the optimal operators in each network layer, but missed a good strategy to search for feature aggregations, this paper proposes a novel NAS method for 3D medical image segmentation, named UXNet, which searches both the scale-wise feature aggregation strategies as well as the block-wise operators in the encoder-decoder network.
no code implementations • 5 Sep 2019 • Yuanfeng Ji, Hao Chen, Dan Lin, Xiaohua Wu, Di Lin
These kinds of information can be effectively captured by the relation of different anatomical parts of hand bone.
no code implementations • ECCV 2018 • Di Lin, Yuanfeng Ji, Dani Lischinski, Daniel Cohen-Or, Hui Huang
Accurate semantic image segmentation requires the joint consideration of local appearance, semantic information, and global scene context.