Search Results for author: Yue Zhao

Found 145 papers, 73 papers with code

A new perspective on brain stimulation interventions: Optimal stochastic tracking control of brain network dynamics

no code implementations15 Jan 2025 Kangli Dong, Siya Chen, Ying Dan, Lu Zhang, Xinyi Li, Wei Liang, Yue Zhao, Yu Sun

Results show that the energy associated with optimal stochastic tracking control is negatively correlated with the intrinsic average controllability of the brain network system, while the energy of the optimal state approaching control is significantly related to the target state value.

A Large-scale Empirical Study on Large Language Models for Election Prediction

no code implementations19 Dec 2024 Chenxiao Yu, Zhaotian Weng, Yuangang Li, Zheng Li, Xiyang Hu, Yue Zhao

In the first part of this paper, we explore and introduce a multi-step reasoning framework for election prediction, which systematically integrates demographic, ideological, and time-sensitive factors.

AD-LLM: Benchmarking Large Language Models for Anomaly Detection

2 code implementations15 Dec 2024 Tiankai Yang, Yi Nian, Shawn Li, Ruiyao Xu, Yuangang Li, Jiaqi Li, Zhuo Xiao, Xiyang Hu, Ryan Rossi, Kaize Ding, Xia Hu, Yue Zhao

Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring.

Anomaly Detection Benchmarking +6

PyOD 2: A Python Library for Outlier Detection with LLM-powered Model Selection

1 code implementation11 Dec 2024 Sihan Chen, Zhuangzhuang Qian, Wingchun Siu, Xingcan Hu, Jiaqi Li, Shawn Li, Yuehan Qin, Tiankai Yang, Zhuo Xiao, Wanghao Ye, Yichi Zhang, Yushun Dong, Yue Zhao

Outlier detection (OD), also known as anomaly detection, is a critical machine learning (ML) task with applications in fraud detection, network intrusion detection, clickstream analysis, recommendation systems, and social network moderation.

Anomaly Detection Fraud Detection +5

H-FedSN: Personalized Sparse Networks for Efficient and Accurate Hierarchical Federated Learning for IoT Applications

no code implementations9 Dec 2024 Jiechao Gao, Yuangang Li, Yue Zhao, Brad Campbell

While Hierarchical Federated Learning (HFL) improves practicality in multi-tier IoT environments by multi-layer aggregation, it still faces challenges in communication efficiency and accuracy due to high data transfer volumes, data heterogeneity, and imbalanced device distribution, struggling to meet the low-latency and high-accuracy model training requirements of practical IoT scenarios.

Federated Learning Privacy Preserving

Multi-Party Supervised Fine-tuning of Language Models for Multi-Party Dialogue Generation

no code implementations6 Dec 2024 Xiaoyu Wang, Ningyuan Xi, Teng Chen, Qingqing Gu, Yue Zhao, Xiaokai Chen, Zhonglin Jiang, Yong Chen, Luo Ji

Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication.

Dialogue Generation

NLP-ADBench: NLP Anomaly Detection Benchmark

1 code implementation6 Dec 2024 Yuangang Li, Jiaqi Li, Zhuo Xiao, Tiankai Yang, Yi Nian, Xiyang Hu, Yue Zhao

This work fills a crucial gap in the field and establishes a foundation for advancing NLP anomaly detection, particularly in the context of improving the safety and reliability of web-based systems.

Anomaly Detection Fraud Detection +1

Edit Away and My Face Will not Stay: Personal Biometric Defense against Malicious Generative Editing

1 code implementation25 Nov 2024 Hanhui Wang, Yihua Zhang, Ruizheng Bai, Yue Zhao, Sijia Liu, Zhengzhong Tu

Recent advancements in diffusion models have made generative image editing more accessible, enabling creative edits but raising ethical concerns, particularly regarding malicious edits to human portraits that threaten privacy and identity security.

Privacy Preserving

DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration

no code implementations24 Nov 2024 Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Tianfan Fu, Yue Zhao

Recent advancements in Large Language Models (LLMs) have opened new avenues for accelerating drug discovery processes.

Drug Discovery

COOD: Concept-based Zero-shot OOD Detection

no code implementations15 Nov 2024 Zhendong Liu, Yi Nian, Henry Peng Zou, Li Li, Xiyang Hu, Yue Zhao

Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations.

DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection

1 code implementation12 Nov 2024 Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, Yue Zhao

Extensive experiments on two tasks, five datasets, and nine base OOD algorithms demonstrate that DPU significantly improves OOD detection performance, setting a new state-of-the-art in multimodal OOD detection, with improvements of up to 80 percent in Far-OOD detection.

Optical Flow Estimation Out-of-Distribution Detection +1

Meta-Learning for Speeding Up Large Model Inference in Decentralized Environments

no code implementations28 Oct 2024 Yuzhe Yang, Yipeng Du, Ahmad Farhan, Claudio Angione, Yue Zhao, Harry Yang, Fielding Johnston, James Buban, Patrick Colangelo

In this work, we address the challenge of selecting optimal acceleration methods in decentralized systems by introducing a meta-learning-based framework.

Decision Making Image Generation +1

LEGO-Learn: Label-Efficient Graph Open-Set Learning

no code implementations21 Oct 2024 Haoyan Xu, Kay Liu, Zhengtao Yao, Philip S. Yu, Kaize Ding, Yue Zhao

Graph open-set learning (GOL) and out-of-distribution (OOD) detection aim to address this challenge by training models that can accurately classify known, in-distribution (ID) classes while identifying and handling previously unseen classes during inference.

Node Classification Open Set Learning +1

Movie Gen: A Cast of Media Foundation Models

2 code implementations17 Oct 2024 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, Yuming Du

Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation.

Audio Generation Video Editing +1

Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation

no code implementations16 Oct 2024 Zerui Xu, Fang Wu, Yuanyuan Zhang, Yue Zhao

Despite the advancements of large language models (LLMs) in general generation tasks, their potential in facilitating the generation of synthetic clinical trials is under-explored.

Language Modeling Language Modelling +2

BA-Net: Bridge Attention in Deep Neural Networks

no code implementations10 Oct 2024 Ronghui Zhang, Runzong Zou, Yue Zhao, Zirui Zhang, Junzhou Chen, Yue Cao, Chuan Hu, Houbing Song

Attention mechanisms, particularly channel attention, have become highly influential in numerous computer vision tasks.

MetaOOD: Automatic Selection of OOD Detection Models

no code implementations4 Oct 2024 Yuehan Qin, Yichi Zhang, Yi Nian, Xueying Ding, Yue Zhao

How can we automatically select an out-of-distribution (OOD) detection model for various underlying tasks?

Autonomous Driving Meta-Learning +1

DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning

1 code implementation2 Oct 2024 Jiaqing Xie, Yue Zhao, Tianfan Fu

In recent years, deep learning has revolutionized the field of protein science, enabling advancements in predicting protein properties, structural folding and interactions.

Deep Learning Drug Discovery +2

Conditional nonparametric variable screening by neural factor regression

no code implementations20 Aug 2024 Jianqing Fan, Weining Wang, Yue Zhao

Our test statistics are based on the estimated partial derivative of the regression function of the candidate variable for screening and a observable proxy for the latent factors.

regression

Towards Secure and Private AI: A Framework for Decentralized Inference

no code implementations28 Jul 2024 Hongyang Zhang, Yue Zhao, Claudio Angione, Harry Yang, James Buban, Ahmad Farhan, Fielding Johnston, Patrick Colangelo

This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems.

Fairness

Appformer: A Novel Framework for Mobile App Usage Prediction Leveraging Progressive Multi-Modal Data Fusion and Feature Extraction

no code implementations28 Jul 2024 Chuike Sun, Junzhou Chen, Yue Zhao, Hao Han, Ruihai Jing, Guang Tan, Di wu

This article presents Appformer, a novel mobile application prediction framework inspired by the efficiency of Transformer-like architectures in processing sequential data through self-attention mechanisms.

Time Series Analysis Word Embeddings

ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting

1 code implementation10 Jul 2024 Luoxiao Yang, Yun Wang, Xinqi Fan, Israel Cohen, Jingdong Chen, Yue Zhao, Zijun Zhang

The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF).

Time Series Time Series Forecasting

TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era

1 code implementation9 Jul 2024 Sascha Caron, Nadezhda Dobreva, Antonio Ferrer Sánchez, José D. Martín-Guerrero, Uraz Odyurt, Roberto Ruiz de Austri Bazan, Zef Wolffs, Yue Zhao

We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments.

Image and Video Tokenization with Binary Spherical Quantization

2 code implementations11 Jun 2024 Yue Zhao, Yuanjun Xiong, Philipp Krähenbühl

The resulting BSQ-ViT achieves state-of-the-art visual reconstruction quality on image and video reconstruction benchmarks with 2. 4$\times$ throughput compared to the best prior methods.

Decoder Image Generation +3

Hidden in Plain Sight: Exploring Chat History Tampering in Interactive Language Models

no code implementations30 May 2024 Cheng'an Wei, Yue Zhao, Yujia Gong, Kai Chen, Lu Xiang, Shenchen Zhu

Large Language Models (LLMs) such as ChatGPT and Llama have become prevalent in real-world applications, exhibiting impressive text generation performance.

Text Generation

MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities

1 code implementation27 May 2024 Hao Dong, Yue Zhao, Eleni Chatzi, Olga Fink

Extensive experiments on MultiOOD demonstrate that training with A2D and NP-Mix improves existing OOD detection algorithms by a large margin.

Autonomous Driving Out-of-Distribution Detection

ADs: Active Data-sharing for Data Quality Assurance in Advanced Manufacturing Systems

no code implementations31 Mar 2024 Yue Zhao, YuXuan Li, Chenang Liu, Yinan Wang

Machine learning (ML) methods are widely used in industrial applications, which usually require a large amount of training data.

Anomaly Detection

Bayesian Diffusion Models for 3D Shape Reconstruction

1 code implementation CVPR 2024 Haiyang Xu, Yu Lei, Zeyuan Chen, Xiang Zhang, Yue Zhao, Yilin Wang, Zhuowen Tu

We present Bayesian Diffusion Models (BDM), a prediction algorithm that performs effective Bayesian inference by tightly coupling the top-down (prior) information with the bottom-up (data-driven) procedure via joint diffusion processes.

3D Reconstruction 3D Shape Reconstruction +1

Sparse Anatomical Prompt Semi-Supervised Learning with Masked Image Modeling for CBCT Tooth Segmentation

no code implementations7 Feb 2024 Pengyu Dai, Yafei Ou, Yuqiao Yang, Yang Liu, Yue Zhao

To address these challenges, this study aims to propose a tasked-oriented Masked Auto-Encoder paradigm to effectively utilize large amounts of unlabeled data to achieve accurate tooth segmentation with limited labeled data.

Graph Attention Segmentation

LLM Factoscope: Uncovering LLMs' Factual Discernment through Inner States Analysis

no code implementations27 Dec 2023 Jinwen He, Yujia Gong, Kai Chen, Zijin Lin, Chengan Wei, Yue Zhao

In this paper, we introduce the LLM factoscope, a novel Siamese network-based model that leverages the inner states of LLMs for factual detection.

GenoCraft: A Comprehensive, User-Friendly Web-Based Platform for High-Throughput Omics Data Analysis and Visualization

1 code implementation21 Dec 2023 Yingzhou Lu, Minjie Shen, Ling Yue, Chenhao Li, Lulu Chen, Fan Meng, Xiao Wang, David Herrington, Yue Wang, Yue Zhao, Tianfan Fu, Capucine van Rechem

With GenoCraft, researchers and data scientists have access to an array of cutting-edge bioinformatics tools under a user-friendly interface, making it a valuable resource for managing and analyzing large-scale omics data.

NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly Generation

1 code implementation20 Nov 2023 Hao Dong, Gaëtan Frusque, Yue Zhao, Eleni Chatzi, Olga Fink

While AD is typically treated as an unsupervised learning task due to the high cost of label annotation, it is more practical to assume access to a small set of labeled anomaly samples from domain experts, as is the case for semi-supervised anomaly detection.

Data Augmentation Fault Detection +4

Benchmarking Machine Learning Models for Quantum Error Correction

no code implementations18 Nov 2023 Yue Zhao

Quantum Error Correction (QEC) is one of the fundamental problems in quantum computer systems, which aims to detect and correct errors in the data qubits within quantum computers.

Benchmarking

What Makes for Robust Multi-Modal Models in the Face of Missing Modalities?

no code implementations10 Oct 2023 Siting Li, Chenzhuang Du, Yue Zhao, Yu Huang, Hang Zhao

With the growing success of multi-modal learning, research on the robustness of multi-modal models, especially when facing situations with missing modalities, is receiving increased attention.

Data Augmentation

Reformulating Vision-Language Foundation Models and Datasets Towards Universal Multimodal Assistants

2 code implementations1 Oct 2023 Tianyu Yu, Jinyi Hu, Yuan YAO, Haoye Zhang, Yue Zhao, Chongyi Wang, Shan Wang, Yinxv Pan, Jiao Xue, Dahai Li, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun

The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following.

Instruction Following

ADGym: Design Choices for Deep Anomaly Detection

3 code implementations NeurIPS 2023 Minqi Jiang, Chaochuan Hou, Ao Zheng, Songqiao Han, Hailiang Huang, Qingsong Wen, Xiyang Hu, Yue Zhao

Deep learning (DL) techniques have recently found success in anomaly detection (AD) across various fields such as finance, medical services, and cloud computing.

Anomaly Detection Cloud Computing

Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages

2 code implementations23 Aug 2023 Jinyi Hu, Yuan YAO, Chongyi Wang, Shan Wang, Yinxu Pan, Qianyu Chen, Tianyu Yu, Hanghao Wu, Yue Zhao, Haoye Zhang, Xu Han, Yankai Lin, Jiao Xue, Dahai Li, Zhiyuan Liu, Maosong Sun

Building a competitive counterpart in other languages is highly challenging due to the low-resource nature of non-English multimodal data (i. e., lack of large-scale, high-quality image-text data).

Image to text Language Modeling +3

Fast Unsupervised Deep Outlier Model Selection with Hypernetworks

1 code implementation20 Jul 2023 Xueying Ding, Yue Zhao, Leman Akoglu

Outlier detection (OD) finds many applications with a rich literature of numerous techniques.

Meta-Learning Model Selection +1

Accurate 3D Prediction of Missing Teeth in Diverse Patterns for Precise Dental Implant Planning

no code implementations16 Jul 2023 Lei Ma, Peng Xue, Yuning Gu, Yue Zhao, Min Zhu, Zhongxiang Ding, Dinggang Shen

This study presents a novel framework for accurate prediction of missing teeth in different patterns, facilitating digital implant planning.

DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection

1 code implementation13 Jul 2023 Jaemin Yoo, Yue Zhao, Lingxiao Zhao, Leman Akoglu

DSV captures the alignment between an augmentation function and the anomaly-generating mechanism with surrogate losses, which approximate the discordance and separability of test data, respectively.

Data Augmentation Model Selection +2

Regularized Multivariate Functional Principal Component Analysis

no code implementations24 Jun 2023 Hossein Haghbin, Yue Zhao, Mehdi Maadooliat

Multivariate Functional Principal Component Analysis (MFPCA) is a valuable tool for exploring relationships and identifying shared patterns of variation in multivariate functional data.

Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

1 code implementation23 May 2023 Peng Xu, Lin Zhang, Xuanzhou Liu, Jiaqi Sun, Yue Zhao, Haiqin Yang, Bei Yu

Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-GNNs, has achieved significant performance over manually designed GNN architectures.

Neural Architecture Search

Construction of unbiased dental template and parametric dental model for precision digital dentistry

no code implementations7 Apr 2023 Lei Ma, Jingyang Zhang, Ke Deng, Peng Xue, Zhiming Cui, Yu Fang, Minhui Tang, Yue Zhao, Min Zhu, Zhongxiang Ding, Dinggang Shen

In this study, we develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.

Image Cropping Segmentation

Stabilization with Prescribed Instant via Lyapunov Method

no code implementations22 Feb 2023 Jiyuan Kuang, Yabin Gao, Yizhuo Sun, Jiahui Wang, Aohua Liu, Yue Zhao, Jianxing Liu

In anothor word, the settling time under the presented controller is independent of the initial conditions and equals the prescribed time instant.

Weakly Supervised Anomaly Detection: A Survey

2 code implementations9 Feb 2023 Minqi Jiang, Chaochuan Hou, Ao Zheng, Xiyang Hu, Songqiao Han, Hailiang Huang, Xiangnan He, Philip S. Yu, Yue Zhao

Anomaly detection (AD) is a crucial task in machine learning with various applications, such as detecting emerging diseases, identifying financial frauds, and detecting fake news.

Supervised Anomaly Detection Survey +3

Online Kernel Sliced Inverse Regression

no code implementations23 Jan 2023 Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng

Online dimension reduction is a common method for high-dimensional streaming data processing.

Dimensionality Reduction regression +1

EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation

1 code implementation5 Jan 2023 Yue Zhao, Wei zhang, Tiejun Li

We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems.

Dimensionality Reduction

Offline Supervised Learning V.S. Online Direct Policy Optimization: A Comparative Study and A Unified Training Paradigm for Neural Network-Based Optimal Feedback Control

1 code implementation29 Nov 2022 Yue Zhao, Jiequn Han

We first conduct a comparative study of two prevalent approaches: offline supervised learning and online direct policy optimization.

Toward Unsupervised Outlier Model Selection

1 code implementation3 Nov 2022 Yue Zhao, Sean Zhang, Leman Akoglu

At its core, ELECT is based on meta-learning; transferring prior knowledge (e. g. model performance) on historical datasets that are similar to the new one to facilitate UOMS.

Meta-Learning Model Selection +1

Mitigating Representation Bias in Action Recognition: Algorithms and Benchmarks

1 code implementation20 Sep 2022 Haodong Duan, Yue Zhao, Kai Chen, Yuanjun Xiong, Dahua Lin

Deep learning models have achieved excellent recognition results on large-scale video benchmarks.

Action Recognition

Diffusion Models: A Comprehensive Survey of Methods and Applications

2 code implementations2 Sep 2022 Ling Yang, Zhilong Zhang, Yang song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang

This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration.

Image Super-Resolution Survey +2

Hyperparameter Optimization for Unsupervised Outlier Detection

no code implementations24 Aug 2022 Yue Zhao, Leman Akoglu

Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without any labels?

Hyperparameter Optimization Meta-Learning +1

ADMoE: Anomaly Detection with Mixture-of-Experts from Noisy Labels

1 code implementation24 Aug 2022 Yue Zhao, Guoqing Zheng, Subhabrata Mukherjee, Robert McCann, Ahmed Awadallah

In this work, we propose a method to leverage weak/noisy labels (e. g., risk scores generated by machine rules for detecting malware) that are cheaper to obtain for anomaly detection.

Anomaly Detection

BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs

2 code implementations21 Jun 2022 Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H. Chen, Zhihao Jia, Philip S. Yu

To bridge this gap, we present--to the best of our knowledge--the first comprehensive benchmark for unsupervised outlier node detection on static attributed graphs called BOND, with the following highlights.

Anomaly Detection Benchmarking +2

ADBench: Anomaly Detection Benchmark

5 code implementations19 Jun 2022 Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, Yue Zhao

Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data?

Anomaly Detection Outlier Detection

ELODI: Ensemble Logit Difference Inhibition for Positive-Congruent Training

1 code implementation12 May 2022 Yue Zhao, Yantao Shen, Yuanjun Xiong, Shuo Yang, Wei Xia, Zhuowen Tu, Bernt Schiele, Stefano Soatto

Based on the observation, we present a method, called Ensemble Logit Difference Inhibition (ELODI), to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model.

Classification Image Classification

Deep Supervised Information Bottleneck Hashing for Cross-modal Retrieval based Computer-aided Diagnosis

no code implementations6 May 2022 Yufeng Shi, Shuhuang Chen, Xinge You, Qinmu Peng, Weihua Ou, Yue Zhao

Mapping X-ray images, radiology reports, and other medical data as binary codes in the common space, which can assist clinicians to retrieve pathology-related data from heterogeneous modalities (i. e., hashing-based cross-modal medical data retrieval), provides a new view to promot computeraided diagnosis.

Cross-Modal Retrieval Retrieval

A Deep Reinforcement Learning Framework for Rapid Diagnosis of Whole Slide Pathological Images

no code implementations5 May 2022 Tingting Zheng, Weixing Chen, Shuqin Li, Hao Quan, Qun Bai, Tianhang Nan, Song Zheng, Xinghua Gao, Yue Zhao, Xiaoyu Cui

Inspired by the pathologist's clinical diagnosis process, we propose a weakly supervised deep reinforcement learning framework, which can greatly reduce the time required for network inference.

Deep Reinforcement Learning Knowledge Distillation +3

Gaussian Kernel Variance For an Adaptive Learning Method on Signals Over Graphs

no code implementations26 Apr 2022 Yue Zhao, Ender Ayanoglu

To be more specific, we focus on SKG with a Gaussian kernel and specify how to find a suitable variance for the kernel.

Two-Stream Graph Convolutional Network for Intra-oral Scanner Image Segmentation

1 code implementation19 Apr 2022 Yue Zhao, Lingming Zhang, Yang Liu, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen

The state-of-the-art deep learning-based methods often simply concatenate the raw geometric attributes (i. e., coordinates and normal vectors) of mesh cells to train a single-stream network for automatic intra-oral scanner image segmentation.

Graph Learning Image Segmentation +3

Combining Individual and Joint Networking Behavior for Intelligent IoT Analytics

no code implementations7 Mar 2022 Jeya Vikranth Jeyakumar, Ludmila Cherkasova, Saina Lajevardi, Moray Allan, Yue Zhao, John Fry, Mani Srivastava

In this work, we design a novel, scalable approach, where a general demand forecasting model is built using the combined data of all the companies with a normalization factor.

Demand Forecasting Management

Learning Robust Representation through Graph Adversarial Contrastive Learning

no code implementations31 Jan 2022 Jiayan Guo, Shangyang Li, Yue Zhao, Yan Zhang

Existing studies show that node representations generated by graph neural networks (GNNs) are vulnerable to adversarial attacks, such as unnoticeable perturbations of adjacent matrix and node features.

Contrastive Learning Graph Representation Learning +2

ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions

2 code implementations2 Jan 2022 Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, George H. Chen

To address these issues, we present a simple yet effective algorithm called ECOD (Empirical-Cumulative-distribution-based Outlier Detection), which is inspired by the fact that outliers are often the "rare events" that appear in the tails of a distribution.

Anomaly Detection Outlier Detection

AI-Lancet: Locating Error-inducing Neurons to Optimize Neural Networks

1 code implementation ACM SIGSAC Conference on Computer and Communications Security 2021 Yue Zhao, Hong Zhu, Kai Chen, Shengzhi Zhang

With the knowledge of error-inducing neurons, we propose two methods to fix the errors: the neuron-flip and the neuron-fine-tuning.

BA-Net: Bridge Attention for Deep Convolutional Neural Networks

1 code implementation8 Dec 2021 Yue Zhao, Junzhou Chen, Zirui Zhang, Ronghui Zhang

The core idea of this design is to bridge the outputs of the previous convolution layers through skip connections for channel weights generation.

Automatic Unsupervised Outlier Model Selection

no code implementations NeurIPS 2021 Yue Zhao, Ryan Rossi, Leman Akoglu

Given an unsupervised outlier detection task on a new dataset, how can we automatically select a good outlier detection algorithm and its hyperparameter(s) (collectively called a model)?

Meta-Learning Model Selection +1

Federated Learning Based on Dynamic Regularization

4 code implementations ICLR 2021 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough, Venkatesh Saligrama

We propose a novel federated learning method for distributively training neural network models, where the server orchestrates cooperation between a subset of randomly chosen devices in each round.

Federated Learning

TOD: GPU-accelerated Outlier Detection via Tensor Operations

2 code implementations26 Oct 2021 Yue Zhao, George H. Chen, Zhihao Jia

Outlier detection (OD) is a key learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection.

Fraud Detection Intrusion Detection +2

3D Dental model segmentation with graph attentional convolution network

no code implementations Pattern Recognition Letters 2021 Yue Zhao, Lingming Zhang, Chongshi Yang, Yingyun Tan, Yang Liu, Pengcheng Li, Tianhao Huang, Chenqiang Gao

We have evaluated our network on a real-patient dataset of dental models acquired through 3D intraoral scanners, and experimental results show that our method outperforms state-of-the-art deep learning methods for 3D shape segmentation.

Segmentation

Local Patch Network with Global Attention for Infrared Small Target Detection

1 code implementation13 Aug 2021 Fang Chen, Chenqiang Gao, Fangcen Liu, Yue Zhao, Yuxi Zhou, Deyu Meng, WangMeng Zuo

A local patch network (LPNet) with global attention is proposed in this paper to detect small targets by jointly considering the global and local properties of infrared small target images.

Deep Learning Semantic Segmentation

Intrinsically Motivated Self-supervised Learning in Reinforcement Learning

no code implementations26 Jun 2021 Yue Zhao, Chenzhuang Du, Hang Zhao, Tiejun Li

In vision-based reinforcement learning (RL) tasks, it is prevalent to assign auxiliary tasks with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency.

Decision Making reinforcement-learning +4

TSGCNet: Discriminative Geometric Feature Learning With Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation

no code implementations CVPR 2021 Lingming Zhang, Yue Zhao, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen

State-of-the-art methods directly concatenate the raw attributes of 3D inputs, namely coordinates and normal vectors of mesh cells, to train a single-stream network for fully-automated tooth segmentation.

Graph Learning

GCN-MIF: Graph Convolutional Network with Multi-Information Fusion for Low-dose CT Denoising

3 code implementations15 May 2021 Kecheng Chen, Jiayu Sun, Jiang Shen, Jixiang Luo, Xinyu Zhang, Xuelin Pan, Dongsheng Wu, Yue Zhao, Miguel Bento, Yazhou Ren, Xiaorong Pu

To address this issue, we propose a novel graph convolutional network-based LDCT denoising model, namely GCN-MIF, to explicitly perform multi-information fusion for denoising purpose.

Decoder Denoising

Revisiting Skeleton-based Action Recognition

4 code implementations CVPR 2022 Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, Bo Dai

In this work, we propose PoseC3D, a new approach to skeleton-based action recognition, which relies on a 3D heatmap stack instead of a graph sequence as the base representation of human skeletons.

Group Activity Recognition Pose Estimation +1

A Large-scale Study on Unsupervised Outlier Model Selection: Do Internal Strategies Suffice?

1 code implementation3 Apr 2021 Martin Q. Ma, Yue Zhao, Xiaorong Zhang, Leman Akoglu

These so-called internal strategies solely rely on the input data (without labels) and the output (outlier scores) of the candidate models.

Model Selection Outlier Detection

PointBA: Towards Backdoor Attacks in 3D Point Cloud

no code implementations ICCV 2021 Xinke Li, Zhirui Chen, Yue Zhao, Zekun Tong, Yabang Zhao, Andrew Lim, Joey Tianyi Zhou

We present the backdoor attacks in 3D point cloud with a unified framework that exploits the unique properties of 3D data and networks.

Backdoor Attack Disentanglement

HufuNet: Embedding the Left Piece as Watermark and Keeping the Right Piece for Ownership Verification in Deep Neural Networks

no code implementations25 Mar 2021 Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Yue Zhao, Yingjiu Li

Most existing solutions embed backdoors in DNN model training such that DNN ownership can be verified by triggering distinguishable model behaviors with a set of secret inputs.

Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run

no code implementations28 Jan 2021 The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, S. Appert, Koya Arai, Koji Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, S. M. Aronson, H. Asada, Y. Asali, G. Ashton, Y. Aso, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, L. Baiotti, J. Baird, R. Bajpai, M. Ball, G. Ballardin, S. W. Ballmer, M. Bals, A. Balsamo, G. Baltus, S. Banagiri, D. Bankar, R. S. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, A. C. Baylor, M. Bazzan, B. Bécsy, V. M. Bedakihale, M. Bejger, I. Belahcene, V. Benedetto, D. Beniwal, M. G. Benjamin, T. F. Bennett, J. D. Bentley, M. BenYaala, F. Bergamin, B. K. Berger, S. Bernuzzi, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, A. V. Bhandari, D. Bhattacharjee, S. Bhaumik, J. Bidler, I. A. Bilenko, G. Billingsley, R. Birney, O. Birnholtz, S. Biscans, M. Bischi, S. Biscoveanu, A. Bisht, B. Biswas, M. Bitossi, M. -A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair, F. Bobba, N. Bode, M. Boer, G. Bogaert, M. Boldrini, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, R. Bork, V. Boschi, N. Bose, S. Bose, V. Bossilkov, V. Boudart, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, A. Branch, M. Branchesi, J. E. Brau, M. Breschi, T. Briant, J. H. Briggs, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks, J. Brooks, D. D. Brown, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, R. L. Byer, L. Cadonati, M. Caesar, G. Cagnoli, C. Cahillane, H. W. Cain III, J. Calderón Bustillo, J. D. Callaghan, T. A. Callister, E. Calloni, J. B. Camp, M. Canepa, M. Cannavacciuolo, K. C. Cannon, H. Cao, J. Cao, Z. Cao, E. Capocasa, E. Capote, G. Carapella, F. Carbognani, J. B. Carlin, M. F. Carney, M. Carpinelli, G. Carullo, T. L. Carver, J. Casanueva Diaz, C. Casentini, G. Castaldi, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, E. Cesarini, W. Chaibi, K. Chakravarti, B. Champion, C. -H. Chan, C. Chan, C. L. Chan, M. Chan, K. Chandra, P. Chanial, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, A. Chen, C. Chen, H. Y. Chen, J. Chen, K. Chen, X. Chen, Y. -B. Chen, Y. -R. Chen, Z. Chen, H. Cheng, C. K. Cheong, H. Y. Cheung, H. Y. Chia, F. Chiadini, C-Y. Chiang, R. Chierici, A. Chincarini, M. L. Chiofalo, A. Chiummo, G. Cho, H. S. Cho, S. Choate, R. K. Choudhary, S. Choudhary, N. Christensen, H. Chu, Q. Chu, Y-K. Chu, S. Chua, K. W. Chung, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, E. N. Clark, J. A. Clark, L. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, P. -F. Cohadon, D. E. Cohen, L. Cohen, M. Colleoni, C. G. Collette, M. Colpi, C. M. Compton, M. Constancio Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, K. R. Corley, N. Cornish, D. Corre, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J. -P. Coulon, S. T. Countryman, B. Cousins, P. Couvares, P. B. Covas, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, A. W. Criswell, M. Croquette, S. G. Crowder, J. R. Cudell, T. J. Cullen, A. Cumming, R. Cummings, E. Cuoco, M. Curyło, T. Dal Canton, G. Dálya, A. Dana, L. M. DaneshgaranBajastani, B. D'Angelo, S. L. Danilishin, S. D'Antonio, K. Danzmann, C. Darsow-Fromm, A. Dasgupta, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, E. J. Daw, R. Dean, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, V. Del Favero, F. De Lillo, N. De Lillo, W. Del Pozzo, L. M. DeMarchi, F. De Matteis, V. D'Emilio, N. Demos, T. Dent, A. Depasse, R. De Pietri, R. De Rosa, C. De Rossi, R. DeSalvo, R. De Simone, S. Dhurandhar, M. C. Díaz, M. Diaz-Ortiz Jr., N. A. Didio, T. Dietrich, L. Di Fiore, C. Di Fronzo, C. Di Giorgio, F. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. K. Divakarla, A. Dmitriev, Z. Doctor, L. D'Onofrio, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, M. Drago, J. C. Driggers, Y. Drori, Z. Du, J. -G. Ducoin, P. Dupej, O. Durante, D. D'Urso, P. -A. Duverne, I. Dvorkin, S. E. Dwyer, P. J. Easter, M. Ebersold, G. Eddolls, B. Edelman, T. B. Edo, O. Edy, A. Effler, S. Eguchi, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, A. Ejlli, Y. Enomoto, L. Errico, R. C. Essick, H. Estellés, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, B. E. Ewing, V. Fafone, H. Fair, S. Fairhurst, X. Fan, A. M. Farah, S. Farinon, B. Farr, W. M. Farr, N. W. Farrow, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, F. Feng, E. Fenyvesi, D. L. Ferguson, A. Fernandez-Galiana, I. Ferrante, T. A. Ferreira, F. Fidecaro, P. Figura, I. Fiori, M. Fishbach, R. P. Fisher, J. M. Fishner, R. Fittipaldi, V. Fiumara, R. Flaminio, E. Floden, E. Flynn, H. Fong, J. A. Font, B. Fornal, P. W. F. Forsyth, A. Franke, S. Frasca, F. Frasconi, C. Frederick, Z. Frei, A. Freise, R. Frey, P. Fritschel, V. V. Frolov, G. G. Fronzé, Y. Fujii, Y. Fujikawa, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, J. Gais, S. Galaudage, R. Gamba, D. Ganapathy, A. Ganguly, D. Gao, S. G. Gaonkar, B. Garaventa, C. García-Núñez, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, V. Gayathri, G. Ge, G. Gemme, A. Gennai, J. George, L. Gergely, P. Gewecke, S. Ghonge, Abhirup. Ghosh, Archisman Ghosh, Shaon Ghosh, Shrobana Ghosh, Sourath Ghosh, B. Giacomazzo, L. Giacoppo, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, M. Giesler, P. Giri, F. Gissi, J. Glanzer, A. E. Gleckl, P. Godwin, E. Goetz, R. Goetz, N. Gohlke, B. Goncharov, G. González, A. Gopakumar, M. Gosselin, R. Gouaty, B. Grace, A. Grado, M. Granata, V. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, A. M. Gretarsson, E. M. Gretarsson, D. Griffith, W. Griffiths, H. L. Griggs, G. Grignani, A. Grimaldi, E. Grimes, S. J. Grimm, H. Grote, S. Grunewald, P. Gruning, J. G. Guerrero, G. M. Guidi, A. R. Guimaraes, G. Guixé, H. K. Gulati, H. -K. Guo, Y. Guo, Anchal Gupta, Anuradha Gupta, P. Gupta, E. K. Gustafson, R. Gustafson, F. Guzman, S. Ha, L. Haegel, A. Hagiwara, S. Haino, O. Halim, E. D. Hall, E. Z. Hamilton, G. Hammond, W. -B. Han, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, H. Hansen, T. J. Hansen, J. Hanson, T. Harder, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, D. Hartwig, K. Hasegawa, B. Haskell, R. K. Hasskew, C. -J. Haster, K. Hattori, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, P. Hello, A. F. Helmling-Cornell, G. Hemming, M. Hendry, I. S. Heng, E. Hennes, J. Hennig, M. H. Hennig, F. Hernandez Vivanco, M. Heurs, S. Hild, P. Hill, Y. Himemoto, A. S. Hines, Y. Hiranuma, N. Hirata, E. Hirose, S. Hochheim, D. Hofman, J. N. Hohmann, A. M. Holgado, N. A. Holland, I. J. Hollows, Z. J. Holmes, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, J. Hough, E. J. Howell, C. G. Hoy, D. Hoyland, A. Hreibi, B-H. Hsieh, Y. Hsu, G-Z. Huang, H-Y. Huang, P. Huang, Y-C. Huang, Y. -J. Huang, Y. -W. Huang, M. T. Hübner, A. D. Huddart, E. A. Huerta, B. Hughey, D. C. Y. Hui, V. Hui, S. Husa, S. H. Huttner, R. Huxford, T. Huynh-Dinh, S. Ide, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, H. Inchauspe, C. Ingram, Y. Inoue, G. Intini, K. Ioka, M. Isi, K. Isleif, K. Ito, Y. Itoh, B. R. Iyer, K. Izumi, V. JaberianHamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, A. Z. Jan, K. Jani, K. Janssens, N. N. Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, C. Jeon, M. Jeunon, W. Jia, J. Jiang, H. -B. Jin, G. R. Johns, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones, R. J. G. Jonker, L. Ju, K. Jung, P. Jung, J. Junker, K. Kaihotsu, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, J. B. Kanner, Y. Kao, S. J. Kapadia, D. P. Kapasi, C. Karathanasis, S. Karki, R. Kashyap, M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, T. Kaur, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, I. Khan, S. Khan, E. A. Khazanov, N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, J. C. Kim, J. Kim, K. Kim, W. S. Kim, Y. -M. Kim, C. Kimball, N. Kimura, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, S. Klimenko, A. M. Knee, T. D. Knowles, E. Knyazev, P. Koch, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, P. Kolitsidou, M. Kolstein, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, K. Kotake, M. Kovalam, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. V. Krishnendu, A. Królak, G. Kuehn, F. Kuei, A. Kumar, P. Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, C. Kuo, H-S. Kuo, Y. Kuromiya, S. Kuroyanagi, K. Kusayanagi, K. Kwak, S. Kwang, D. Laghi, E. Lalande, T. L. Lam, A. Lamberts, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, I. La Rosa, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. Lee, J. Lehmann, A. Lemaître, E. Leon, M. Leonardi, N. Leroy, N. Letendre, Y. Levin, J. N. Leviton, A. K. Y. Li, B. Li, J. Li, K. L. Li, T. G. F. Li, X. Li, C-Y. Lin, F-K. Lin, F-L. Lin, H. L. Lin, L. C. -C. Lin, F. Linde, S. D. Linker, J. N. Linley, T. B. Littenberg, G. C. Liu, J. Liu, K. Liu, X. Liu, M. Llorens-Monteagudo, R. K. L. Lo, A. Lockwood, M. L. Lollie, L. T. London, A. Longo, D. Lopez, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, H. Lück, D. Lumaca, A. P. Lundgren, L. -W. Luo, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, I. Magaña Hernandez, F. Magaña-Sandoval, C. Magazzù, R. M. Magee, R. Maggiore,