no code implementations • 15 Jan 2025 • Kangli Dong, Siya Chen, Ying Dan, Lu Zhang, Xinyi Li, Wei Liang, Yue Zhao, Yu Sun
Results show that the energy associated with optimal stochastic tracking control is negatively correlated with the intrinsic average controllability of the brain network system, while the energy of the optimal state approaching control is significantly related to the target state value.
no code implementations • 21 Dec 2024 • Luo Ji, Feixiang Guo, Teng Chen, Qingqing Gu, Xiaoyu Wang, Ningyuan Xi, Yihong Wang, Peng Yu, Yue Zhao, Hongyang Lei, Zhonglin Jiang, Yong Chen
To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice.
no code implementations • 19 Dec 2024 • Chenxiao Yu, Zhaotian Weng, Yuangang Li, Zheng Li, Xiyang Hu, Yue Zhao
In the first part of this paper, we explore and introduce a multi-step reasoning framework for election prediction, which systematically integrates demographic, ideological, and time-sensitive factors.
2 code implementations • 15 Dec 2024 • Tiankai Yang, Yi Nian, Shawn Li, Ruiyao Xu, Yuangang Li, Jiaqi Li, Zhuo Xiao, Xiyang Hu, Ryan Rossi, Kaize Ding, Xia Hu, Yue Zhao
Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring.
1 code implementation • 11 Dec 2024 • Sihan Chen, Zhuangzhuang Qian, Wingchun Siu, Xingcan Hu, Jiaqi Li, Shawn Li, Yuehan Qin, Tiankai Yang, Zhuo Xiao, Wanghao Ye, Yichi Zhang, Yushun Dong, Yue Zhao
Outlier detection (OD), also known as anomaly detection, is a critical machine learning (ML) task with applications in fraud detection, network intrusion detection, clickstream analysis, recommendation systems, and social network moderation.
no code implementations • 9 Dec 2024 • Lincan Li, Jiaqi Li, Catherine Chen, Fred Gui, Hongjia Yang, Chenxiao Yu, Zhengguang Wang, Jianing Cai, Junlong Aaron Zhou, Bolin Shen, Alex Qian, Weixin Chen, Zhongkai Xue, Lichao Sun, Lifang He, Hanjie Chen, Kaize Ding, Zijian Du, Fangzhou Mu, Jiaxin Pei, Jieyu Zhao, Swabha Swayamdipta, Willie Neiswanger, Hua Wei, Xiyang Hu, Shixiang Zhu, Tianlong Chen, Yingzhou Lu, Yang Shi, Lianhui Qin, Tianfan Fu, Zhengzhong Tu, Yuzhe Yang, Jaemin Yoo, Jiaheng Zhang, Ryan Rossi, Liang Zhan, Liang Zhao, Emilio Ferrara, Yan Liu, Furong Huang, Xiangliang Zhang, Lawrence Rothenberg, Shuiwang Ji, Philip S. Yu, Yue Zhao, Yushun Dong
In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection.
no code implementations • 9 Dec 2024 • Jiechao Gao, Yuangang Li, Yue Zhao, Brad Campbell
While Hierarchical Federated Learning (HFL) improves practicality in multi-tier IoT environments by multi-layer aggregation, it still faces challenges in communication efficiency and accuracy due to high data transfer volumes, data heterogeneity, and imbalanced device distribution, struggling to meet the low-latency and high-accuracy model training requirements of practical IoT scenarios.
no code implementations • 6 Dec 2024 • Xiaoyu Wang, Ningyuan Xi, Teng Chen, Qingqing Gu, Yue Zhao, Xiaokai Chen, Zhonglin Jiang, Yong Chen, Luo Ji
Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication.
1 code implementation • 6 Dec 2024 • Yuangang Li, Jiaqi Li, Zhuo Xiao, Tiankai Yang, Yi Nian, Xiyang Hu, Yue Zhao
This work fills a crucial gap in the field and establishes a foundation for advancing NLP anomaly detection, particularly in the context of improving the safety and reliability of web-based systems.
no code implementations • 3 Dec 2024 • Junda Wu, Hanjia Lyu, Yu Xia, Zhehao Zhang, Joe Barrow, Ishita Kumar, Mehrnoosh Mirtaheri, Hongjie Chen, Ryan A. Rossi, Franck Dernoncourt, Tong Yu, Ruiyi Zhang, Jiuxiang Gu, Nesreen K. Ahmed, Yu Wang, Xiang Chen, Hanieh Deilamsalehy, Namyong Park, Sungchul Kim, Huanrui Yang, Subrata Mitra, Zhengmian Hu, Nedim Lipka, Dang Nguyen, Yue Zhao, Jiebo Luo, Julian McAuley
We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly.
1 code implementation • 25 Nov 2024 • Hanhui Wang, Yihua Zhang, Ruizheng Bai, Yue Zhao, Sijia Liu, Zhengzhong Tu
Recent advancements in diffusion models have made generative image editing more accessible, enabling creative edits but raising ethical concerns, particularly regarding malicious edits to human portraits that threaten privacy and identity security.
no code implementations • 24 Nov 2024 • Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Tianfan Fu, Yue Zhao
Recent advancements in Large Language Models (LLMs) have opened new avenues for accelerating drug discovery processes.
no code implementations • 15 Nov 2024 • Zhendong Liu, Yi Nian, Henry Peng Zou, Li Li, Xiyang Hu, Yue Zhao
Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations.
1 code implementation • 12 Nov 2024 • Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, Yue Zhao
Extensive experiments on two tasks, five datasets, and nine base OOD algorithms demonstrate that DPU significantly improves OOD detection performance, setting a new state-of-the-art in multimodal OOD detection, with improvements of up to 80 percent in Far-OOD detection.
no code implementations • 28 Oct 2024 • Yuzhe Yang, Yipeng Du, Ahmad Farhan, Claudio Angione, Yue Zhao, Harry Yang, Fielding Johnston, James Buban, Patrick Colangelo
In this work, we address the challenge of selecting optimal acceleration methods in decentralized systems by introducing a meta-learning-based framework.
no code implementations • 21 Oct 2024 • Chenxiao Yu, Zhaotian Weng, Yuangang Li, Zheng Li, Xiyang Hu, Yue Zhao
Can Large Language Models (LLMs) accurately predict election outcomes?
no code implementations • 21 Oct 2024 • Haoyan Xu, Kay Liu, Zhengtao Yao, Philip S. Yu, Kaize Ding, Yue Zhao
Graph open-set learning (GOL) and out-of-distribution (OOD) detection aim to address this challenge by training models that can accurately classify known, in-distribution (ID) classes while identifying and handling previously unseen classes during inference.
2 code implementations • 17 Oct 2024 • Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, Yuming Du
Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation.
no code implementations • 16 Oct 2024 • Zerui Xu, Fang Wu, Yuanyuan Zhang, Yue Zhao
Despite the advancements of large language models (LLMs) in general generation tasks, their potential in facilitating the generation of synthetic clinical trials is under-explored.
no code implementations • 10 Oct 2024 • Ronghui Zhang, Runzong Zou, Yue Zhao, Zirui Zhang, Junzhou Chen, Yue Cao, Chuan Hu, Houbing Song
Attention mechanisms, particularly channel attention, have become highly influential in numerous computer vision tasks.
no code implementations • 4 Oct 2024 • Yuehan Qin, Yichi Zhang, Yi Nian, Xueying Ding, Yue Zhao
How can we automatically select an out-of-distribution (OOD) detection model for various underlying tasks?
1 code implementation • 2 Oct 2024 • Jiaqing Xie, Yue Zhao, Tianfan Fu
In recent years, deep learning has revolutionized the field of protein science, enabling advancements in predicting protein properties, structural folding and interactions.
no code implementations • 18 Sep 2024 • Ningyuan Xi, Xiaoyu Wang, Yetao Wu, Teng Chen, Qingqing Gu, Yue Zhao, Jinxian Qu, Zhonglin Jiang, Yong Chen, Luo Ji
Large Language Model can reasonably understand and generate human expressions but may lack of thorough thinking and reasoning mechanisms.
no code implementations • 20 Aug 2024 • Jianqing Fan, Weining Wang, Yue Zhao
Our test statistics are based on the estimated partial derivative of the regression function of the candidate variable for screening and a observable proxy for the latent factors.
no code implementations • 29 Jul 2024 • Claudio Angione, Yue Zhao, Harry Yang, Ahmad Farhan, Fielding Johnston, James Buban, Patrick Colangelo
Nesa introduces a model-agnostic sharding framework designed for decentralized AI inference.
no code implementations • 28 Jul 2024 • Hongyang Zhang, Yue Zhao, Claudio Angione, Harry Yang, James Buban, Ahmad Farhan, Fielding Johnston, Patrick Colangelo
This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems.
no code implementations • 28 Jul 2024 • Chuike Sun, Junzhou Chen, Yue Zhao, Hao Han, Ruihai Jing, Guang Tan, Di wu
This article presents Appformer, a novel mobile application prediction framework inspired by the efficiency of Transformer-like architectures in processing sequential data through self-attention mechanisms.
1 code implementation • 10 Jul 2024 • Luoxiao Yang, Yun Wang, Xinqi Fan, Israel Cohen, Jingdong Chen, Yue Zhao, Zijun Zhang
The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF).
1 code implementation • 9 Jul 2024 • Sascha Caron, Nadezhda Dobreva, Antonio Ferrer Sánchez, José D. Martín-Guerrero, Uraz Odyurt, Roberto Ruiz de Austri Bazan, Zef Wolffs, Yue Zhao
We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments.
1 code implementation • 17 Jun 2024 • Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong Chen, Yupeng Huo, Yuan YAO, Yankai Lin, Zhiyuan Liu, Maosong Sun
Utilizing Graphic User Interface (GUI) for human-computer interaction is essential for accessing a wide range of digital tools.
Ranked #15 on Natural Language Visual Grounding on ScreenSpot
Natural Language Visual Grounding Optical Character Recognition (OCR)
no code implementations • 12 Jun 2024 • Zijin Lin, Yue Zhao, Kai Chen, Jinwen He
Most defenses are only effective against the HA, leaving the detector vulnerable to the AA.
2 code implementations • 11 Jun 2024 • Yue Zhao, Yuanjun Xiong, Philipp Krähenbühl
The resulting BSQ-ViT achieves state-of-the-art visual reconstruction quality on image and video reconstruction benchmarks with 2. 4$\times$ throughput compared to the best prior methods.
1 code implementation • 4 Jun 2024 • Songtao Liu, Hanjun Dai, Yue Zhao, Peng Liu
Molecule synthesis through machine learning is one of the fundamental problems in drug discovery.
no code implementations • 30 May 2024 • Cheng'an Wei, Yue Zhao, Yujia Gong, Kai Chen, Lu Xiang, Shenchen Zhu
Large Language Models (LLMs) such as ChatGPT and Llama have become prevalent in real-world applications, exhibiting impressive text generation performance.
no code implementations • 27 May 2024 • Uraz Odyurt, Nadezhda Dobreva, Zef Wolffs, Yue Zhao, Antonio Ferrer Sánchez, Roberto Ruiz de Austri Bazan, José D. Martín-Guerrero, Ana-Lucia Varbanescu, Sascha Caron
This research sheds light on previously unexplored methods and provides valuable insights for the field of particle track reconstruction and hit clustering in HEP.
1 code implementation • 27 May 2024 • Hao Dong, Yue Zhao, Eleni Chatzi, Olga Fink
Extensive experiments on MultiOOD demonstrate that training with A2D and NP-Mix improves existing OOD detection algorithms by a large margin.
no code implementations • 31 Mar 2024 • Yue Zhao, YuXuan Li, Chenang Liu, Yinan Wang
Machine learning (ML) methods are widely used in industrial applications, which usually require a large amount of training data.
1 code implementation • CVPR 2024 • Haiyang Xu, Yu Lei, Zeyuan Chen, Xiang Zhang, Yue Zhao, Yilin Wang, Zhuowen Tu
We present Bayesian Diffusion Models (BDM), a prediction algorithm that performs effective Bayesian inference by tightly coupling the top-down (prior) information with the bottom-up (data-driven) procedure via joint diffusion processes.
no code implementations • 20 Feb 2024 • Long Zhao, Nitesh B. Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J. Sun, Luke Friedman, Rui Qian, Tobias Weyand, Yue Zhao, Rachel Hornung, Florian Schroff, Ming-Hsuan Yang, David A. Ross, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko, Ting Liu, Boqing Gong
We introduce VideoPrism, a general-purpose video encoder that tackles diverse video understanding tasks with a single frozen model.
no code implementations • 7 Feb 2024 • Pengyu Dai, Yafei Ou, Yuqiao Yang, Yang Liu, Yue Zhao
To address these challenges, this study aims to propose a tasked-oriented Masked Auto-Encoder paradigm to effectively utilize large amounts of unlabeled data to achieve accurate tooth segmentation with limited labeled data.
1 code implementation • 16 Jan 2024 • Xu Yan, Haiming Zhang, Yingjie Cai, Jingming Guo, Weichao Qiu, Bin Gao, Kaiqiang Zhou, Yue Zhao, Huan Jin, Jiantao Gao, Zhen Li, Lihui Jiang, Wei zhang, Hongbo Zhang, Dengxin Dai, Bingbing Liu
The rise of large foundation models, trained on extensive datasets, is revolutionizing the field of AI.
no code implementations • CVPR 2024 • Yue Zhao, Long Zhao, Xingyi Zhou, Jialin Wu, Chun-Te Chu, Hui Miao, Florian Schroff, Hartwig Adam, Ting Liu, Boqing Gong, Philipp Krähenbühl, Liangzhe Yuan
Our best model outperforms state-of-the-art methods on MSR-VTT zero-shot text-to-video retrieval by 6%.
1 code implementation • 10 Jan 2024 • Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric Xing, Furong Huang, Hao liu, Heng Ji, Hongyi Wang, huan zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions.
no code implementations • 27 Dec 2023 • Jinwen He, Yujia Gong, Kai Chen, Zijin Lin, Chengan Wei, Yue Zhao
In this paper, we introduce the LLM factoscope, a novel Siamese network-based model that leverages the inner states of LLMs for factual detection.
1 code implementation • 21 Dec 2023 • Yingzhou Lu, Minjie Shen, Ling Yue, Chenhao Li, Lulu Chen, Fan Meng, Xiao Wang, David Herrington, Yue Wang, Yue Zhao, Tianfan Fu, Capucine van Rechem
With GenoCraft, researchers and data scientists have access to an array of cutting-edge bioinformatics tools under a user-friendly interface, making it a valuable resource for managing and analyzing large-scale omics data.
1 code implementation • 20 Nov 2023 • Hao Dong, Gaëtan Frusque, Yue Zhao, Eleni Chatzi, Olga Fink
While AD is typically treated as an unsupervised learning task due to the high cost of label annotation, it is more practical to assume access to a small set of labeled anomaly samples from domain experts, as is the case for semi-supervised anomaly detection.
no code implementations • 18 Nov 2023 • Yue Zhao
Quantum Error Correction (QEC) is one of the fundamental problems in quantum computer systems, which aims to detect and correct errors in the data qubits within quantum computers.
no code implementations • 10 Oct 2023 • Siting Li, Chenzhuang Du, Yue Zhao, Yu Huang, Hang Zhao
With the growing success of multi-modal learning, research on the robustness of multi-modal models, especially when facing situations with missing modalities, is receiving increased attention.
no code implementations • 8 Oct 2023 • Chenzhuang Du, Yue Zhao, Chonghua Liao, Jiacheng You, Jie Fu, Hang Zhao
To this end, we introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA).
1 code implementation • 2 Oct 2023 • Hanwen Jiang, Zhenyu Jiang, Yue Zhao, QiXing Huang
Are camera poses necessary for multi-view 3D modeling?
2 code implementations • 1 Oct 2023 • Tianyu Yu, Jinyi Hu, Yuan YAO, Haoye Zhang, Yue Zhao, Chongyi Wang, Shan Wang, Yinxv Pan, Jiao Xue, Dahai Li, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun
The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following.
1 code implementation • 28 Sep 2023 • Yue Zhao, Philipp Krähenbühl
Videos are big, complex to pre-process, and slow to train on.
Ranked #1 on Action Recognition on EPIC-KITCHENS-100 (using extra training data)
3 code implementations • NeurIPS 2023 • Minqi Jiang, Chaochuan Hou, Ao Zheng, Songqiao Han, Hailiang Huang, Qingsong Wen, Xiyang Hu, Yue Zhao
Deep learning (DL) techniques have recently found success in anomaly detection (AD) across various fields such as finance, medical services, and cloud computing.
no code implementations • 27 Sep 2023 • Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text.
2 code implementations • 23 Aug 2023 • Jinyi Hu, Yuan YAO, Chongyi Wang, Shan Wang, Yinxu Pan, Qianyu Chen, Tianyu Yu, Hanghao Wu, Yue Zhao, Haoye Zhang, Xu Han, Yankai Lin, Jiao Xue, Dahai Li, Zhiyuan Liu, Maosong Sun
Building a competitive counterpart in other languages is highly challenging due to the low-resource nature of non-English multimodal data (i. e., lack of large-scale, high-quality image-text data).
1 code implementation • 20 Jul 2023 • Xueying Ding, Yue Zhao, Leman Akoglu
Outlier detection (OD) finds many applications with a rich literature of numerous techniques.
no code implementations • 16 Jul 2023 • Lei Ma, Peng Xue, Yuning Gu, Yue Zhao, Min Zhu, Zhongxiang Ding, Dinggang Shen
This study presents a novel framework for accurate prediction of missing teeth in different patterns, facilitating digital implant planning.
1 code implementation • 13 Jul 2023 • Jaemin Yoo, Yue Zhao, Lingxiao Zhao, Leman Akoglu
DSV captures the alignment between an augmentation function and the anomaly-generating mechanism with surrogate losses, which approximate the discordance and separability of test data, respectively.
no code implementations • 24 Jun 2023 • Hossein Haghbin, Yue Zhao, Mehdi Maadooliat
Multivariate Functional Principal Component Analysis (MFPCA) is a valuable tool for exploring relationships and identifying shared patterns of variation in multivariate functional data.
1 code implementation • 23 May 2023 • Peng Xu, Lin Zhang, Xuanzhou Liu, Jiaqi Sun, Yue Zhao, Haiqin Yang, Bei Yu
Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-GNNs, has achieved significant performance over manually designed GNN architectures.
no code implementations • 7 Apr 2023 • Lei Ma, Jingyang Zhang, Ke Deng, Peng Xue, Zhiming Cui, Yu Fang, Minhui Tang, Yue Zhao, Min Zhu, Zhongxiang Ding, Dinggang Shen
In this study, we develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.
no code implementations • 22 Feb 2023 • Jiyuan Kuang, Yabin Gao, Yizhuo Sun, Jiahui Wang, Aohua Liu, Yue Zhao, Jianxing Liu
In anothor word, the settling time under the presented controller is independent of the initial conditions and equals the prescribed time instant.
2 code implementations • 9 Feb 2023 • Minqi Jiang, Chaochuan Hou, Ao Zheng, Xiyang Hu, Songqiao Han, Hailiang Huang, Xiangnan He, Philip S. Yu, Yue Zhao
Anomaly detection (AD) is a crucial task in machine learning with various applications, such as detecting emerging diseases, identifying financial frauds, and detecting fake news.
no code implementations • 23 Jan 2023 • Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng
Federated learning has become a popular tool in the big data era nowadays.
no code implementations • 23 Jan 2023 • Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng
Online dimension reduction is a common method for high-dimensional streaming data processing.
1 code implementation • 5 Jan 2023 • Yue Zhao, Wei zhang, Tiejun Li
We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems.
3 code implementations • CVPR 2023 • Yue Zhao, Ishan Misra, Philipp Krähenbühl, Rohit Girdhar
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs).
Ranked #1 on Action Recognition on Charades-Ego
1 code implementation • 29 Nov 2022 • Yue Zhao, Jiequn Han
We first conduct a comparative study of two prevalent approaches: offline supervised learning and online direct policy optimization.
1 code implementation • 3 Nov 2022 • Yue Zhao, Sean Zhang, Leman Akoglu
At its core, ELECT is based on meta-learning; transferring prior knowledge (e. g. model performance) on historical datasets that are similar to the new one to facilitate UOMS.
1 code implementation • 20 Sep 2022 • Haodong Duan, Yue Zhao, Kai Chen, Yuanjun Xiong, Dahua Lin
Deep learning models have achieved excellent recognition results on large-scale video benchmarks.
1 code implementation • 19 Sep 2022 • Yue Zhao, Philipp Krähenbühl
Streaming video recognition reasons about objects and their actions in every frame of a video.
2 code implementations • 2 Sep 2022 • Ling Yang, Zhilong Zhang, Yang song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang
This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration.
no code implementations • 24 Aug 2022 • Yue Zhao, Leman Akoglu
Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without any labels?
1 code implementation • 24 Aug 2022 • Yue Zhao, Guoqing Zheng, Subhabrata Mukherjee, Robert McCann, Ahmed Awadallah
In this work, we propose a method to leverage weak/noisy labels (e. g., risk scores generated by machine rules for detecting malware) that are cheaper to obtain for anomaly detection.
2 code implementations • 21 Jun 2022 • Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H. Chen, Zhihao Jia, Philip S. Yu
To bridge this gap, we present--to the best of our knowledge--the first comprehensive benchmark for unsupervised outlier node detection on static attributed graphs called BOND, with the following highlights.
5 code implementations • 19 Jun 2022 • Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, Yue Zhao
Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data?
1 code implementation • 12 May 2022 • Yue Zhao, Yantao Shen, Yuanjun Xiong, Shuo Yang, Wei Xia, Zhuowen Tu, Bernt Schiele, Stefano Soatto
Based on the observation, we present a method, called Ensemble Logit Difference Inhibition (ELODI), to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model.
no code implementations • 6 May 2022 • Yufeng Shi, Shuhuang Chen, Xinge You, Qinmu Peng, Weihua Ou, Yue Zhao
Mapping X-ray images, radiology reports, and other medical data as binary codes in the common space, which can assist clinicians to retrieve pathology-related data from heterogeneous modalities (i. e., hashing-based cross-modal medical data retrieval), provides a new view to promot computeraided diagnosis.
no code implementations • 5 May 2022 • Tingting Zheng, Weixing Chen, Shuqin Li, Hao Quan, Qun Bai, Tianhang Nan, Song Zheng, Xinghua Gao, Yue Zhao, Xiaoyu Cui
Inspired by the pathologist's clinical diagnosis process, we propose a weakly supervised deep reinforcement learning framework, which can greatly reduce the time required for network inference.
1 code implementation • NAACL 2022 • Zixian Huang, Ao Wu, Jiaying Zhou, Yu Gu, Yue Zhao, Gong Cheng
A trending paradigm for multiple-choice question answering (MCQA) is using a text-to-text framework.
Ranked #10 on Question Answering on OpenBookQA
no code implementations • 26 Apr 2022 • Yue Zhao, Ender Ayanoglu
To be more specific, we focus on SKG with a Gaussian kernel and specify how to find a suitable variance for the kernel.
1 code implementation • 19 Apr 2022 • Yue Zhao, Lingming Zhang, Yang Liu, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen
The state-of-the-art deep learning-based methods often simply concatenate the raw geometric attributes (i. e., coordinates and normal vectors) of mesh cells to train a single-stream network for automatic intra-oral scanner image segmentation.
no code implementations • 7 Mar 2022 • Jeya Vikranth Jeyakumar, Ludmila Cherkasova, Saina Lajevardi, Moray Allan, Yue Zhao, John Fry, Mani Srivastava
In this work, we design a novel, scalable approach, where a general demand forecasting model is built using the combined data of all the companies with a normalization factor.
no code implementations • 31 Jan 2022 • Jiayan Guo, Shangyang Li, Yue Zhao, Yan Zhang
Existing studies show that node representations generated by graph neural networks (GNNs) are vulnerable to adversarial attacks, such as unnoticeable perturbations of adjacent matrix and node features.
2 code implementations • 2 Jan 2022 • Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, George H. Chen
To address these issues, we present a simple yet effective algorithm called ECOD (Empirical-Cumulative-distribution-based Outlier Detection), which is inspired by the fact that outliers are often the "rare events" that appear in the tails of a distribution.
1 code implementation • ACM SIGSAC Conference on Computer and Communications Security 2021 • Yue Zhao, Hong Zhu, Kai Chen, Shengzhi Zhang
With the knowledge of error-inducing neurons, we propose two methods to fix the errors: the neuron-flip and the neuron-fine-tuning.
1 code implementation • 8 Dec 2021 • Yue Zhao, Junzhou Chen, Zirui Zhang, Ronghui Zhang
The core idea of this design is to bridge the outputs of the previous convolution layers through skip connections for channel weights generation.
no code implementations • NeurIPS 2021 • Yue Zhao, Ryan Rossi, Leman Akoglu
Given an unsupervised outlier detection task on a new dataset, how can we automatically select a good outlier detection algorithm and its hyperparameter(s) (collectively called a model)?
4 code implementations • ICLR 2021 • Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough, Venkatesh Saligrama
We propose a novel federated learning method for distributively training neural network models, where the server orchestrates cooperation between a subset of randomly chosen devices in each round.
2 code implementations • 26 Oct 2021 • Yue Zhao, George H. Chen, Zhihao Jia
Outlier detection (OD) is a key learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection.
no code implementations • Pattern Recognition Letters 2021 • Yue Zhao, Lingming Zhang, Chongshi Yang, Yingyun Tan, Yang Liu, Pengcheng Li, Tianhao Huang, Chenqiang Gao
We have evaluated our network on a real-patient dataset of dental models acquired through 3D intraoral scanners, and experimental results show that our method outperforms state-of-the-art deep learning methods for 3D shape segmentation.
1 code implementation • 13 Aug 2021 • Fang Chen, Chenqiang Gao, Fangcen Liu, Yue Zhao, Yuxi Zhou, Deyu Meng, WangMeng Zuo
A local patch network (LPNet) with global attention is proposed in this paper to detect small targets by jointly considering the global and local properties of infrared small target images.
no code implementations • 26 Jun 2021 • Yue Zhao, Chenzhuang Du, Hang Zhao, Tiejun Li
In vision-based reinforcement learning (RL) tasks, it is prevalent to assign auxiliary tasks with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency.
no code implementations • CVPR 2021 • Lingming Zhang, Yue Zhao, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen
State-of-the-art methods directly concatenate the raw attributes of 3D inputs, namely coordinates and normal vectors of mesh cells, to train a single-stream network for fully-automated tooth segmentation.
3 code implementations • 15 May 2021 • Kecheng Chen, Jiayu Sun, Jiang Shen, Jixiang Luo, Xinyu Zhang, Xuelin Pan, Dongsheng Wu, Yue Zhao, Miguel Bento, Yazhou Ren, Xiaorong Pu
To address this issue, we propose a novel graph convolutional network-based LDCT denoising model, namely GCN-MIF, to explicitly perform multi-information fusion for denoising purpose.
4 code implementations • CVPR 2022 • Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, Bo Dai
In this work, we propose PoseC3D, a new approach to skeleton-based action recognition, which relies on a 3D heatmap stack instead of a graph sequence as the base representation of human skeletons.
Ranked #1 on Action Recognition on Volleyball
1 code implementation • 3 Apr 2021 • Martin Q. Ma, Yue Zhao, Xiaorong Zhang, Leman Akoglu
These so-called internal strategies solely rely on the input data (without labels) and the output (outlier scores) of the candidate models.
no code implementations • ICCV 2021 • Xinke Li, Zhirui Chen, Yue Zhao, Zekun Tong, Yabang Zhao, Andrew Lim, Joey Tianyi Zhou
We present the backdoor attacks in 3D point cloud with a unified framework that exploits the unique properties of 3D data and networks.
no code implementations • 25 Mar 2021 • Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Yue Zhao, Yingjiu Li
Most existing solutions embed backdoors in DNN model training such that DNN ownership can be verified by triggering distinguishable model behaviors with a set of secret inputs.
2 code implementations • 18 Feb 2021 • Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, Marinka Zitnik
Here, we introduce Therapeutics Data Commons (TDC), the first unifying platform to systematically access and evaluate machine learning across the entire range of therapeutics.
Ranked #4 on TDC ADMET Benchmarking Group on tdcommons
no code implementations • 28 Jan 2021 • The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, S. Appert, Koya Arai, Koji Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, S. M. Aronson, H. Asada, Y. Asali, G. Ashton, Y. Aso, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, L. Baiotti, J. Baird, R. Bajpai, M. Ball, G. Ballardin, S. W. Ballmer, M. Bals, A. Balsamo, G. Baltus, S. Banagiri, D. Bankar, R. S. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, A. C. Baylor, M. Bazzan, B. Bécsy, V. M. Bedakihale, M. Bejger, I. Belahcene, V. Benedetto, D. Beniwal, M. G. Benjamin, T. F. Bennett, J. D. Bentley, M. BenYaala, F. Bergamin, B. K. Berger, S. Bernuzzi, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, A. V. Bhandari, D. Bhattacharjee, S. Bhaumik, J. Bidler, I. A. Bilenko, G. Billingsley, R. Birney, O. Birnholtz, S. Biscans, M. Bischi, S. Biscoveanu, A. Bisht, B. Biswas, M. Bitossi, M. -A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair, F. Bobba, N. Bode, M. Boer, G. Bogaert, M. Boldrini, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, R. Bork, V. Boschi, N. Bose, S. Bose, V. Bossilkov, V. Boudart, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, A. Branch, M. Branchesi, J. E. Brau, M. Breschi, T. Briant, J. H. Briggs, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks, J. Brooks, D. D. Brown, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, R. L. Byer, L. Cadonati, M. Caesar, G. Cagnoli, C. Cahillane, H. W. Cain III, J. Calderón Bustillo, J. D. Callaghan, T. A. Callister, E. Calloni, J. B. Camp, M. Canepa, M. Cannavacciuolo, K. C. Cannon, H. Cao, J. Cao, Z. Cao, E. Capocasa, E. Capote, G. Carapella, F. Carbognani, J. B. Carlin, M. F. Carney, M. Carpinelli, G. Carullo, T. L. Carver, J. Casanueva Diaz, C. Casentini, G. Castaldi, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, E. Cesarini, W. Chaibi, K. Chakravarti, B. Champion, C. -H. Chan, C. Chan, C. L. Chan, M. Chan, K. Chandra, P. Chanial, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, A. Chen, C. Chen, H. Y. Chen, J. Chen, K. Chen, X. Chen, Y. -B. Chen, Y. -R. Chen, Z. Chen, H. Cheng, C. K. Cheong, H. Y. Cheung, H. Y. Chia, F. Chiadini, C-Y. Chiang, R. Chierici, A. Chincarini, M. L. Chiofalo, A. Chiummo, G. Cho, H. S. Cho, S. Choate, R. K. Choudhary, S. Choudhary, N. Christensen, H. Chu, Q. Chu, Y-K. Chu, S. Chua, K. W. Chung, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, E. N. Clark, J. A. Clark, L. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, P. -F. Cohadon, D. E. Cohen, L. Cohen, M. Colleoni, C. G. Collette, M. Colpi, C. M. Compton, M. Constancio Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, K. R. Corley, N. Cornish, D. Corre, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J. -P. Coulon, S. T. Countryman, B. Cousins, P. Couvares, P. B. Covas, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, A. W. Criswell, M. Croquette, S. G. Crowder, J. R. Cudell, T. J. Cullen, A. Cumming, R. Cummings, E. Cuoco, M. Curyło, T. Dal Canton, G. Dálya, A. Dana, L. M. DaneshgaranBajastani, B. D'Angelo, S. L. Danilishin, S. D'Antonio, K. Danzmann, C. Darsow-Fromm, A. Dasgupta, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, E. J. Daw, R. Dean, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, V. Del Favero, F. De Lillo, N. De Lillo, W. Del Pozzo, L. M. DeMarchi, F. De Matteis, V. D'Emilio, N. Demos, T. Dent, A. Depasse, R. De Pietri, R. De Rosa, C. De Rossi, R. DeSalvo, R. De Simone, S. Dhurandhar, M. C. Díaz, M. Diaz-Ortiz Jr., N. A. Didio, T. Dietrich, L. Di Fiore, C. Di Fronzo, C. Di Giorgio, F. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. K. Divakarla, A. Dmitriev, Z. Doctor, L. D'Onofrio, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, M. Drago, J. C. Driggers, Y. Drori, Z. Du, J. -G. Ducoin, P. Dupej, O. Durante, D. D'Urso, P. -A. Duverne, I. Dvorkin, S. E. Dwyer, P. J. Easter, M. Ebersold, G. Eddolls, B. Edelman, T. B. Edo, O. Edy, A. Effler, S. Eguchi, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, A. Ejlli, Y. Enomoto, L. Errico, R. C. Essick, H. Estellés, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, B. E. Ewing, V. Fafone, H. Fair, S. Fairhurst, X. Fan, A. M. Farah, S. Farinon, B. Farr, W. M. Farr, N. W. Farrow, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, F. Feng, E. Fenyvesi, D. L. Ferguson, A. Fernandez-Galiana, I. Ferrante, T. A. Ferreira, F. Fidecaro, P. Figura, I. Fiori, M. Fishbach, R. P. Fisher, J. M. Fishner, R. Fittipaldi, V. Fiumara, R. Flaminio, E. Floden, E. Flynn, H. Fong, J. A. Font, B. Fornal, P. W. F. Forsyth, A. Franke, S. Frasca, F. Frasconi, C. Frederick, Z. Frei, A. Freise, R. Frey, P. Fritschel, V. V. Frolov, G. G. Fronzé, Y. Fujii, Y. Fujikawa, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, J. Gais, S. Galaudage, R. Gamba, D. Ganapathy, A. Ganguly, D. Gao, S. G. Gaonkar, B. Garaventa, C. García-Núñez, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, V. Gayathri, G. Ge, G. Gemme, A. Gennai, J. George, L. Gergely, P. Gewecke, S. Ghonge, Abhirup. Ghosh, Archisman Ghosh, Shaon Ghosh, Shrobana Ghosh, Sourath Ghosh, B. Giacomazzo, L. Giacoppo, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, M. Giesler, P. Giri, F. Gissi, J. Glanzer, A. E. Gleckl, P. Godwin, E. Goetz, R. Goetz, N. Gohlke, B. Goncharov, G. González, A. Gopakumar, M. Gosselin, R. Gouaty, B. Grace, A. Grado, M. Granata, V. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, A. M. Gretarsson, E. M. Gretarsson, D. Griffith, W. Griffiths, H. L. Griggs, G. Grignani, A. Grimaldi, E. Grimes, S. J. Grimm, H. Grote, S. Grunewald, P. Gruning, J. G. Guerrero, G. M. Guidi, A. R. Guimaraes, G. Guixé, H. K. Gulati, H. -K. Guo, Y. Guo, Anchal Gupta, Anuradha Gupta, P. Gupta, E. K. Gustafson, R. Gustafson, F. Guzman, S. Ha, L. Haegel, A. Hagiwara, S. Haino, O. Halim, E. D. Hall, E. Z. Hamilton, G. Hammond, W. -B. Han, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, H. Hansen, T. J. Hansen, J. Hanson, T. Harder, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, D. Hartwig, K. Hasegawa, B. Haskell, R. K. Hasskew, C. -J. Haster, K. Hattori, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, P. Hello, A. F. Helmling-Cornell, G. Hemming, M. Hendry, I. S. Heng, E. Hennes, J. Hennig, M. H. Hennig, F. Hernandez Vivanco, M. Heurs, S. Hild, P. Hill, Y. Himemoto, A. S. Hines, Y. Hiranuma, N. Hirata, E. Hirose, S. Hochheim, D. Hofman, J. N. Hohmann, A. M. Holgado, N. A. Holland, I. J. Hollows, Z. J. Holmes, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, J. Hough, E. J. Howell, C. G. Hoy, D. Hoyland, A. Hreibi, B-H. Hsieh, Y. Hsu, G-Z. Huang, H-Y. Huang, P. Huang, Y-C. Huang, Y. -J. Huang, Y. -W. Huang, M. T. Hübner, A. D. Huddart, E. A. Huerta, B. Hughey, D. C. Y. Hui, V. Hui, S. Husa, S. H. Huttner, R. Huxford, T. Huynh-Dinh, S. Ide, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, H. Inchauspe, C. Ingram, Y. Inoue, G. Intini, K. Ioka, M. Isi, K. Isleif, K. Ito, Y. Itoh, B. R. Iyer, K. Izumi, V. JaberianHamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, A. Z. Jan, K. Jani, K. Janssens, N. N. Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, C. Jeon, M. Jeunon, W. Jia, J. Jiang, H. -B. Jin, G. R. Johns, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones, R. J. G. Jonker, L. Ju, K. Jung, P. Jung, J. Junker, K. Kaihotsu, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, J. B. Kanner, Y. Kao, S. J. Kapadia, D. P. Kapasi, C. Karathanasis, S. Karki, R. Kashyap, M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, T. Kaur, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, I. Khan, S. Khan, E. A. Khazanov, N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, J. C. Kim, J. Kim, K. Kim, W. S. Kim, Y. -M. Kim, C. Kimball, N. Kimura, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, S. Klimenko, A. M. Knee, T. D. Knowles, E. Knyazev, P. Koch, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, P. Kolitsidou, M. Kolstein, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, K. Kotake, M. Kovalam, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. V. Krishnendu, A. Królak, G. Kuehn, F. Kuei, A. Kumar, P. Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, C. Kuo, H-S. Kuo, Y. Kuromiya, S. Kuroyanagi, K. Kusayanagi, K. Kwak, S. Kwang, D. Laghi, E. Lalande, T. L. Lam, A. Lamberts, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, I. La Rosa, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. Lee, J. Lehmann, A. Lemaître, E. Leon, M. Leonardi, N. Leroy, N. Letendre, Y. Levin, J. N. Leviton, A. K. Y. Li, B. Li, J. Li, K. L. Li, T. G. F. Li, X. Li, C-Y. Lin, F-K. Lin, F-L. Lin, H. L. Lin, L. C. -C. Lin, F. Linde, S. D. Linker, J. N. Linley, T. B. Littenberg, G. C. Liu, J. Liu, K. Liu, X. Liu, M. Llorens-Monteagudo, R. K. L. Lo, A. Lockwood, M. L. Lollie, L. T. London, A. Longo, D. Lopez, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, H. Lück, D. Lumaca, A. P. Lundgren, L. -W. Luo, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, I. Magaña Hernandez, F. Magaña-Sandoval, C. Magazzù, R. M. Magee, R. Maggiore,