1 code implementation • 20 Nov 2023 • Hao Dong, Gaëtan Frusque, Yue Zhao, Eleni Chatzi, Olga Fink
While AD is typically treated as an unsupervised learning task due to the high cost of label annotation, it is more practical to assume access to a small set of labeled anomaly samples from domain experts, as is the case for semi-supervised anomaly detection.
no code implementations • 18 Nov 2023 • Tim Fu, Yue Zhao
Quantum Error Correction (QEC) is one of the fundamental problems in quantum computer systems, which aims to detect and correct errors in the data qubits within quantum computers.
no code implementations • 10 Oct 2023 • Siting Li, Chenzhuang Du, Yue Zhao, Yu Huang, Hang Zhao
With the growing success of multi-modal learning, research on the robustness of multi-modal models, especially when facing situations with missing modalities, is receiving increased attention.
no code implementations • 8 Oct 2023 • Chenzhuang Du, Yue Zhao, Chonghua Liao, Jiacheng You, Jie Fu, Hang Zhao
To this end, we introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA).
no code implementations • 2 Oct 2023 • Hanwen Jiang, Zhenyu Jiang, Yue Zhao, QiXing Huang
Are camera poses necessary for multi-view 3D modeling?
1 code implementation • 1 Oct 2023 • Tianyu Yu, Jinyi Hu, Yuan YAO, Haoye Zhang, Yue Zhao, Chongyi Wang, Shan Wang, Yinxv Pan, Jiao Xue, Dahai Li, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun
The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following.
1 code implementation • 28 Sep 2023 • Yue Zhao, Philipp Krähenbühl
Videos are big, complex to pre-process, and slow to train on.
Ranked #1 on
Multi-Instance Retrieval
on EPIC-KITCHENS-100
no code implementations • 27 Sep 2023 • Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text.
1 code implementation • 23 Aug 2023 • Jinyi Hu, Yuan YAO, Chongyi Wang, Shan Wang, Yinxu Pan, Qianyu Chen, Tianyu Yu, Hanghao Wu, Yue Zhao, Haoye Zhang, Xu Han, Yankai Lin, Jiao Xue, Dahai Li, Zhiyuan Liu, Maosong Sun
Building a competitive counterpart in other languages is highly challenging due to the low-resource nature of non-English multimodal data (i. e., lack of large-scale, high-quality image-text data).
no code implementations • 20 Jul 2023 • Xueying Ding, Yue Zhao, Leman Akoglu
Outlier detection (OD) finds many applications with a rich literature of numerous techniques.
no code implementations • 16 Jul 2023 • Lei Ma, Peng Xue, Yuning Gu, Yue Zhao, Min Zhu, Zhongxiang Ding, Dinggang Shen
This study presents a novel framework for accurate prediction of missing teeth in different patterns, facilitating digital implant planning.
1 code implementation • 13 Jul 2023 • Jaemin Yoo, Yue Zhao, Lingxiao Zhao, Leman Akoglu
DSV captures the alignment between an augmentation function and the anomaly-generating mechanism with surrogate losses, which approximate the discordance and separability of test data, respectively.
no code implementations • 24 Jun 2023 • Hossein Haghbin, Yue Zhao, Mehdi Maadooliat
Multivariate Functional Principal Component Analysis (MFPCA) is a valuable tool for exploring relationships and identifying shared patterns of variation in multivariate functional data.
1 code implementation • 23 May 2023 • Peng Xu, Lin Zhang, Xuanzhou Liu, Jiaqi Sun, Yue Zhao, Haiqin Yang, Bei Yu
Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-GNNs, has achieved significant performance over manually designed GNN architectures.
no code implementations • 7 Apr 2023 • Lei Ma, Jingyang Zhang, Ke Deng, Peng Xue, Zhiming Cui, Yu Fang, Minhui Tang, Yue Zhao, Min Zhu, Zhongxiang Ding, Dinggang Shen
In this study, we develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.
no code implementations • 22 Feb 2023 • Jiyuan Kuang, Yabin Gao, Yizhuo Sun, Jiahui Wang, Aohua Liu, Yue Zhao, Jianxing Liu
In anothor word, the settling time under the presented controller is independent of the initial conditions and equals the prescribed time instant.
2 code implementations • 9 Feb 2023 • Minqi Jiang, Chaochuan Hou, Ao Zheng, Xiyang Hu, Songqiao Han, Hailiang Huang, Xiangnan He, Philip S. Yu, Yue Zhao
Anomaly detection (AD) is a crucial task in machine learning with various applications, such as detecting emerging diseases, identifying financial frauds, and detecting fake news.
no code implementations • 23 Jan 2023 • Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng
Federated learning has become a popular tool in the big data era nowadays.
no code implementations • 23 Jan 2023 • Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng
Online dimension reduction is a common method for high-dimensional streaming data processing.
no code implementations • 5 Jan 2023 • Yue Zhao, Wei zhang, Tiejun Li
We present a novel yet simple deep learning approach, dubbed EPR-Net, for constructing the potential landscape of high-dimensional non-equilibrium steady state (NESS) systems.
1 code implementation • CVPR 2023 • Yue Zhao, Ishan Misra, Philipp Krähenbühl, Rohit Girdhar
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs).
Ranked #1 on
Action Recognition
on Charades-Ego
1 code implementation • 29 Nov 2022 • Yue Zhao, Jiequn Han
We first conduct a comparative study of two mainstream approaches: offline supervised learning and online direct policy optimization.
1 code implementation • 3 Nov 2022 • Yue Zhao, Sean Zhang, Leman Akoglu
At its core, ELECT is based on meta-learning; transferring prior knowledge (e. g. model performance) on historical datasets that are similar to the new one to facilitate UOMS.
1 code implementation • 20 Sep 2022 • Haodong Duan, Yue Zhao, Kai Chen, Yuanjun Xiong, Dahua Lin
Deep learning models have achieved excellent recognition results on large-scale video benchmarks.
1 code implementation • 19 Sep 2022 • Yue Zhao, Philipp Krähenbühl
Streaming video recognition reasons about objects and their actions in every frame of a video.
2 code implementations • 2 Sep 2022 • Ling Yang, Zhilong Zhang, Yang song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, Ming-Hsuan Yang
This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration.
no code implementations • 24 Aug 2022 • Yue Zhao, Leman Akoglu
Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without any labels?
1 code implementation • 24 Aug 2022 • Yue Zhao, Guoqing Zheng, Subhabrata Mukherjee, Robert McCann, Ahmed Awadallah
In this work, we propose a method to leverage weak/noisy labels (e. g., risk scores generated by machine rules for detecting malware) that are cheaper to obtain for anomaly detection.
2 code implementations • 21 Jun 2022 • Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H. Chen, Zhihao Jia, Philip S. Yu
To bridge this gap, we present--to the best of our knowledge--the first comprehensive benchmark for unsupervised outlier node detection on static attributed graphs called BOND, with the following highlights.
4 code implementations • 19 Jun 2022 • Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, Yue Zhao
Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data?
no code implementations • 12 May 2022 • Yue Zhao, Yantao Shen, Yuanjun Xiong, Shuo Yang, Wei Xia, Zhuowen Tu, Bernt Schiele, Stefano Soatto
We present a method to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model.
no code implementations • 6 May 2022 • Yufeng Shi, Shuhuang Chen, Xinge You, Qinmu Peng, Weihua Ou, Yue Zhao
Mapping X-ray images, radiology reports, and other medical data as binary codes in the common space, which can assist clinicians to retrieve pathology-related data from heterogeneous modalities (i. e., hashing-based cross-modal medical data retrieval), provides a new view to promot computeraided diagnosis.
no code implementations • 5 May 2022 • Tingting Zheng, Weixing Chen, Shuqin Li, Hao Quan, Qun Bai, Tianhang Nan, Song Zheng, Xinghua Gao, Yue Zhao, Xiaoyu Cui
Inspired by the pathologist's clinical diagnosis process, we propose a weakly supervised deep reinforcement learning framework, which can greatly reduce the time required for network inference.
1 code implementation • NAACL 2022 • Zixian Huang, Ao Wu, Jiaying Zhou, Yu Gu, Yue Zhao, Gong Cheng
A trending paradigm for multiple-choice question answering (MCQA) is using a text-to-text framework.
no code implementations • 26 Apr 2022 • Yue Zhao, Ender Ayanoglu
To be more specific, we focus on SKG with a Gaussian kernel and specify how to find a suitable variance for the kernel.
1 code implementation • 26 Apr 2022 • Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, George H. Chen, Zhihao Jia, Philip S. Yu
PyGOD is an open-source Python library for detecting outliers on graph data.
1 code implementation • 19 Apr 2022 • Yue Zhao, Lingming Zhang, Yang Liu, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen
The state-of-the-art deep learning-based methods often simply concatenate the raw geometric attributes (i. e., coordinates and normal vectors) of mesh cells to train a single-stream network for automatic intra-oral scanner image segmentation.
no code implementations • 7 Mar 2022 • Jeya Vikranth Jeyakumar, Ludmila Cherkasova, Saina Lajevardi, Moray Allan, Yue Zhao, John Fry, Mani Srivastava
In this work, we design a novel, scalable approach, where a general demand forecasting model is built using the combined data of all the companies with a normalization factor.
no code implementations • 31 Jan 2022 • Jiayan Guo, Shangyang Li, Yue Zhao, Yan Zhang
Existing studies show that node representations generated by graph neural networks (GNNs) are vulnerable to adversarial attacks, such as unnoticeable perturbations of adjacent matrix and node features.
2 code implementations • 2 Jan 2022 • Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, George H. Chen
To address these issues, we present a simple yet effective algorithm called ECOD (Empirical-Cumulative-distribution-based Outlier Detection), which is inspired by the fact that outliers are often the "rare events" that appear in the tails of a distribution.
1 code implementation • ACM SIGSAC Conference on Computer and Communications Security 2021 • Yue Zhao, Hong Zhu, Kai Chen, Shengzhi Zhang
With the knowledge of error-inducing neurons, we propose two methods to fix the errors: the neuron-flip and the neuron-fine-tuning.
1 code implementation • 8 Dec 2021 • Yue Zhao, Junzhou Chen, Zirui Zhang, Ronghui Zhang
The core idea of this design is to bridge the outputs of the previous convolution layers through skip connections for channel weights generation.
no code implementations • NeurIPS 2021 • Yue Zhao, Ryan Rossi, Leman Akoglu
Given an unsupervised outlier detection task on a new dataset, how can we automatically select a good outlier detection algorithm and its hyperparameter(s) (collectively called a model)?
3 code implementations • ICLR 2021 • Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough, Venkatesh Saligrama
We propose a novel federated learning method for distributively training neural network models, where the server orchestrates cooperation between a subset of randomly chosen devices in each round.
2 code implementations • 26 Oct 2021 • Yue Zhao, George H. Chen, Zhihao Jia
Outlier detection (OD) is a key learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection.
no code implementations • Pattern Recognition Letters 2021 • Yue Zhao, Lingming Zhang, Chongshi Yang, Yingyun Tan, Yang Liu, Pengcheng Li, Tianhao Huang, Chenqiang Gao
We have evaluated our network on a real-patient dataset of dental models acquired through 3D intraoral scanners, and experimental results show that our method outperforms state-of-the-art deep learning methods for 3D shape segmentation.
1 code implementation • 13 Aug 2021 • Fang Chen, Chenqiang Gao, Fangcen Liu, Yue Zhao, Yuxi Zhou, Deyu Meng, WangMeng Zuo
A local patch network (LPNet) with global attention is proposed in this paper to detect small targets by jointly considering the global and local properties of infrared small target images.
no code implementations • 26 Jun 2021 • Yue Zhao, Chenzhuang Du, Hang Zhao, Tiejun Li
In vision-based reinforcement learning (RL) tasks, it is prevalent to assign auxiliary tasks with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency.
no code implementations • CVPR 2021 • Lingming Zhang, Yue Zhao, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen
State-of-the-art methods directly concatenate the raw attributes of 3D inputs, namely coordinates and normal vectors of mesh cells, to train a single-stream network for fully-automated tooth segmentation.
2 code implementations • 15 May 2021 • Kecheng Chen, Jiayu Sun, Jiang Shen, Jixiang Luo, Xinyu Zhang, Xuelin Pan, Dongsheng Wu, Yue Zhao, Miguel Bento, Yazhou Ren, Xiaorong Pu
To address this issue, we propose a novel graph convolutional network-based LDCT denoising model, namely GCN-MIF, to explicitly perform multi-information fusion for denoising purpose.
4 code implementations • CVPR 2022 • Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, Bo Dai
In this work, we propose PoseC3D, a new approach to skeleton-based action recognition, which relies on a 3D heatmap stack instead of a graph sequence as the base representation of human skeletons.
Ranked #1 on
Skeleton Based Action Recognition
on NTU RGB+D
(using extra training data)
1 code implementation • 3 Apr 2021 • Martin Q. Ma, Yue Zhao, Xiaorong Zhang, Leman Akoglu
These so-called internal strategies solely rely on the input data (without labels) and the output (outlier scores) of the candidate models.
no code implementations • ICCV 2021 • Xinke Li, Zhirui Chen, Yue Zhao, Zekun Tong, Yabang Zhao, Andrew Lim, Joey Tianyi Zhou
We present the backdoor attacks in 3D point cloud with a unified framework that exploits the unique properties of 3D data and networks.
no code implementations • 25 Mar 2021 • Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Yue Zhao, Yingjiu Li
Most existing solutions embed backdoors in DNN model training such that DNN ownership can be verified by triggering distinguishable model behaviors with a set of secret inputs.
2 code implementations • 18 Feb 2021 • Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, Marinka Zitnik
Here, we introduce Therapeutics Data Commons (TDC), the first unifying platform to systematically access and evaluate machine learning across the entire range of therapeutics.
no code implementations • 28 Jan 2021 • The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, S. Appert, Koya Arai, Koji Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, S. M. Aronson, H. Asada, Y. Asali, G. Ashton, Y. Aso, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, L. Baiotti, J. Baird, R. Bajpai, M. Ball, G. Ballardin, S. W. Ballmer, M. Bals, A. Balsamo, G. Baltus, S. Banagiri, D. Bankar, R. S. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, A. C. Baylor, M. Bazzan, B. Bécsy, V. M. Bedakihale, M. Bejger, I. Belahcene, V. Benedetto, D. Beniwal, M. G. Benjamin, T. F. Bennett, J. D. Bentley, M. BenYaala, F. Bergamin, B. K. Berger, S. Bernuzzi, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, A. V. Bhandari, D. Bhattacharjee, S. Bhaumik, J. Bidler, I. A. Bilenko, G. Billingsley, R. Birney, O. Birnholtz, S. Biscans, M. Bischi, S. Biscoveanu, A. Bisht, B. Biswas, M. Bitossi, M. -A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair, F. Bobba, N. Bode, M. Boer, G. Bogaert, M. Boldrini, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, R. Bork, V. Boschi, N. Bose, S. Bose, V. Bossilkov, V. Boudart, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, A. Branch, M. Branchesi, J. E. Brau, M. Breschi, T. Briant, J. H. Briggs, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks, J. Brooks, D. D. Brown, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, R. L. Byer, L. Cadonati, M. Caesar, G. Cagnoli, C. Cahillane, H. W. Cain III, J. Calderón Bustillo, J. D. Callaghan, T. A. Callister, E. Calloni, J. B. Camp, M. Canepa, M. Cannavacciuolo, K. C. Cannon, H. Cao, J. Cao, Z. Cao, E. Capocasa, E. Capote, G. Carapella, F. Carbognani, J. B. Carlin, M. F. Carney, M. Carpinelli, G. Carullo, T. L. Carver, J. Casanueva Diaz, C. Casentini, G. Castaldi, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, E. Cesarini, W. Chaibi, K. Chakravarti, B. Champion, C. -H. Chan, C. Chan, C. L. Chan, M. Chan, K. Chandra, P. Chanial, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, A. Chen, C. Chen, H. Y. Chen, J. Chen, K. Chen, X. Chen, Y. -B. Chen, Y. -R. Chen, Z. Chen, H. Cheng, C. K. Cheong, H. Y. Cheung, H. Y. Chia, F. Chiadini, C-Y. Chiang, R. Chierici, A. Chincarini, M. L. Chiofalo, A. Chiummo, G. Cho, H. S. Cho, S. Choate, R. K. Choudhary, S. Choudhary, N. Christensen, H. Chu, Q. Chu, Y-K. Chu, S. Chua, K. W. Chung, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, E. N. Clark, J. A. Clark, L. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, P. -F. Cohadon, D. E. Cohen, L. Cohen, M. Colleoni, C. G. Collette, M. Colpi, C. M. Compton, M. Constancio Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, K. R. Corley, N. Cornish, D. Corre, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J. -P. Coulon, S. T. Countryman, B. Cousins, P. Couvares, P. B. Covas, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, A. W. Criswell, M. Croquette, S. G. Crowder, J. R. Cudell, T. J. Cullen, A. Cumming, R. Cummings, E. Cuoco, M. Curyło, T. Dal Canton, G. Dálya, A. Dana, L. M. DaneshgaranBajastani, B. D'Angelo, S. L. Danilishin, S. D'Antonio, K. Danzmann, C. Darsow-Fromm, A. Dasgupta, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, E. J. Daw, R. Dean, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, V. Del Favero, F. De Lillo, N. De Lillo, W. Del Pozzo, L. M. DeMarchi, F. De Matteis, V. D'Emilio, N. Demos, T. Dent, A. Depasse, R. De Pietri, R. De Rosa, C. De Rossi, R. DeSalvo, R. De Simone, S. Dhurandhar, M. C. Díaz, M. Diaz-Ortiz Jr., N. A. Didio, T. Dietrich, L. Di Fiore, C. Di Fronzo, C. Di Giorgio, F. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. K. Divakarla, A. Dmitriev, Z. Doctor, L. D'Onofrio, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, M. Drago, J. C. Driggers, Y. Drori, Z. Du, J. -G. Ducoin, P. Dupej, O. Durante, D. D'Urso, P. -A. Duverne, I. Dvorkin, S. E. Dwyer, P. J. Easter, M. Ebersold, G. Eddolls, B. Edelman, T. B. Edo, O. Edy, A. Effler, S. Eguchi, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, A. Ejlli, Y. Enomoto, L. Errico, R. C. Essick, H. Estellés, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, B. E. Ewing, V. Fafone, H. Fair, S. Fairhurst, X. Fan, A. M. Farah, S. Farinon, B. Farr, W. M. Farr, N. W. Farrow, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, F. Feng, E. Fenyvesi, D. L. Ferguson, A. Fernandez-Galiana, I. Ferrante, T. A. Ferreira, F. Fidecaro, P. Figura, I. Fiori, M. Fishbach, R. P. Fisher, J. M. Fishner, R. Fittipaldi, V. Fiumara, R. Flaminio, E. Floden, E. Flynn, H. Fong, J. A. Font, B. Fornal, P. W. F. Forsyth, A. Franke, S. Frasca, F. Frasconi, C. Frederick, Z. Frei, A. Freise, R. Frey, P. Fritschel, V. V. Frolov, G. G. Fronzé, Y. Fujii, Y. Fujikawa, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, J. Gais, S. Galaudage, R. Gamba, D. Ganapathy, A. Ganguly, D. Gao, S. G. Gaonkar, B. Garaventa, C. García-Núñez, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, V. Gayathri, G. Ge, G. Gemme, A. Gennai, J. George, L. Gergely, P. Gewecke, S. Ghonge, Abhirup. Ghosh, Archisman Ghosh, Shaon Ghosh, Shrobana Ghosh, Sourath Ghosh, B. Giacomazzo, L. Giacoppo, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, M. Giesler, P. Giri, F. Gissi, J. Glanzer, A. E. Gleckl, P. Godwin, E. Goetz, R. Goetz, N. Gohlke, B. Goncharov, G. González, A. Gopakumar, M. Gosselin, R. Gouaty, B. Grace, A. Grado, M. Granata, V. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, A. M. Gretarsson, E. M. Gretarsson, D. Griffith, W. Griffiths, H. L. Griggs, G. Grignani, A. Grimaldi, E. Grimes, S. J. Grimm, H. Grote, S. Grunewald, P. Gruning, J. G. Guerrero, G. M. Guidi, A. R. Guimaraes, G. Guixé, H. K. Gulati, H. -K. Guo, Y. Guo, Anchal Gupta, Anuradha Gupta, P. Gupta, E. K. Gustafson, R. Gustafson, F. Guzman, S. Ha, L. Haegel, A. Hagiwara, S. Haino, O. Halim, E. D. Hall, E. Z. Hamilton, G. Hammond, W. -B. Han, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, H. Hansen, T. J. Hansen, J. Hanson, T. Harder, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, D. Hartwig, K. Hasegawa, B. Haskell, R. K. Hasskew, C. -J. Haster, K. Hattori, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, P. Hello, A. F. Helmling-Cornell, G. Hemming, M. Hendry, I. S. Heng, E. Hennes, J. Hennig, M. H. Hennig, F. Hernandez Vivanco, M. Heurs, S. Hild, P. Hill, Y. Himemoto, A. S. Hines, Y. Hiranuma, N. Hirata, E. Hirose, S. Hochheim, D. Hofman, J. N. Hohmann, A. M. Holgado, N. A. Holland, I. J. Hollows, Z. J. Holmes, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, J. Hough, E. J. Howell, C. G. Hoy, D. Hoyland, A. Hreibi, B-H. Hsieh, Y. Hsu, G-Z. Huang, H-Y. Huang, P. Huang, Y-C. Huang, Y. -J. Huang, Y. -W. Huang, M. T. Hübner, A. D. Huddart, E. A. Huerta, B. Hughey, D. C. Y. Hui, V. Hui, S. Husa, S. H. Huttner, R. Huxford, T. Huynh-Dinh, S. Ide, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, H. Inchauspe, C. Ingram, Y. Inoue, G. Intini, K. Ioka, M. Isi, K. Isleif, K. Ito, Y. Itoh, B. R. Iyer, K. Izumi, V. JaberianHamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, A. Z. Jan, K. Jani, K. Janssens, N. N. Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, C. Jeon, M. Jeunon, W. Jia, J. Jiang, H. -B. Jin, G. R. Johns, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones, R. J. G. Jonker, L. Ju, K. Jung, P. Jung, J. Junker, K. Kaihotsu, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, J. B. Kanner, Y. Kao, S. J. Kapadia, D. P. Kapasi, C. Karathanasis, S. Karki, R. Kashyap, M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, T. Kaur, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, I. Khan, S. Khan, E. A. Khazanov, N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, J. C. Kim, J. Kim, K. Kim, W. S. Kim, Y. -M. Kim, C. Kimball, N. Kimura, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, S. Klimenko, A. M. Knee, T. D. Knowles, E. Knyazev, P. Koch, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, P. Kolitsidou, M. Kolstein, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, K. Kotake, M. Kovalam, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. V. Krishnendu, A. Królak, G. Kuehn, F. Kuei, A. Kumar, P. Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, C. Kuo, H-S. Kuo, Y. Kuromiya, S. Kuroyanagi, K. Kusayanagi, K. Kwak, S. Kwang, D. Laghi, E. Lalande, T. L. Lam, A. Lamberts, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, I. La Rosa, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. Lee, J. Lehmann, A. Lemaître, E. Leon, M. Leonardi, N. Leroy, N. Letendre, Y. Levin, J. N. Leviton, A. K. Y. Li, B. Li, J. Li, K. L. Li, T. G. F. Li, X. Li, C-Y. Lin, F-K. Lin, F-L. Lin, H. L. Lin, L. C. -C. Lin, F. Linde, S. D. Linker, J. N. Linley, T. B. Littenberg, G. C. Liu, J. Liu, K. Liu, X. Liu, M. Llorens-Monteagudo, R. K. L. Lo, A. Lockwood, M. L. Lollie, L. T. London, A. Longo, D. Lopez, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, H. Lück, D. Lumaca, A. P. Lundgren, L. -W. Luo, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, I. Magaña Hernandez, F. Magaña-Sandoval, C. Magazzù, R. M. Magee, R. Maggiore, E. Majorana, I. Maksimovic, S. Maliakal, A. Malik, N. Man, V. Mandic, V. Mangano, J. L. Mango, G. L. Mansell, M. Manske, M. Mantovani, M. Mapelli, F. Marchesoni, M. Marchio, F. Marion, Z. Mark, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, M. Martinez, V. Martinez, K. Martinovic, D. V. Martynov, E. J. Marx, H. Masalehdan, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, M. Mateu-Lucena, F. Matichard, M. Matiushechkina, N. Mavalvala, J. J. McCann, R. McCarthy, D. E. McClelland, P. McClincy, S. McCormick, L. McCuller, G. I. McGhee, S. C. McGuire, C. McIsaac, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, M. Mehmet, A. K. Mehta, A. Melatos, D. A. Melchor, G. Mendell, A. Menendez-Vazquez, C. S. Menoni, R. A. Mercer, L. Mereni, K. Merfeld, E. L. Merilh, J. D. Merritt, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Meylahn, A. Mhaske, A. Miani, H. Miao, I. Michaloliakos, C. Michel, Y. Michimura, H. Middleton, L. Milano, A. L. Miller, M. Millhouse, J. C. Mills, E. Milotti, M. C. Milovich-Goff, O. Minazzoli, Y. Minenkov, N. Mio, Ll. M. Mir, A. Mishkin, C. Mishra, T. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, Y. Miyazaki, K. Miyo, S. Miyoki, Geoffrey Mo, K. Mogushi, S. R. P. Mohapatra, S. R. Mohite, I. Molina, M. Molina-Ruiz, M. Mondin, M. Montani, C. J. Moore, D. Moraru, F. Morawski, A. More, C. Moreno, G. Moreno, Y. Mori, S. Morisaki, Y. Moriwaki, B. Mours, C. M. Mow-Lowry, S. Mozzon, F. Muciaccia, Arunava Mukherjee, D. Mukherjee, Soma Mukherjee, Subroto Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, P. G. Murray, R. Musenich, S. L. Nadji, K. Nagano, S. Nagano, A. Nagar, K. Nakamura, H. Nakano, M. Nakano, R. Nakashima, Y. Nakayama, I. Nardecchia, T. Narikawa, L. Naticchioni, B. Nayak, R. K. Nayak, R. Negishi, B. F. Neil, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, A. Neunzert, K. Y. Ng, S. W. S. Ng, C. Nguyen, P. Nguyen, T. Nguyen, L. Nguyen Quynh, W. -T. Ni, S. A. Nichols, A. Nishizawa, S. Nissanke, F. Nocera, M. Noh, M. Norman, C. North, S. Nozaki, L. K. Nuttall, J. Oberling, B. D. O'Brien, Y. Obuchi, J. O'Dell, W. Ogaki, G. Oganesyan, J. J. Oh, K. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, H. Ohta, M. A. Okada, Y. Okutani, K. Okutomi, C. Olivetto, K. Oohara, C. Ooi, R. Oram, B. O'Reilly, R. G. Ormiston, N. D. Ormsby, L. F. Ortega, R. O'Shaughnessy, E. O'Shea, S. Oshino, S. Ossokine, C. Osthelder, S. Otabe, D. J. Ottaway, H. Overmier, A. E. Pace, G. Pagano, M. A. Page, G. Pagliaroli, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, K. Pan, P. K. Panda, H. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, A. Paolone, A. Parisi, J. Park, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patel, B. Patricelli, E. Payne, T. C. Pechsiri, M. Pedraza, M. Pegoraro, A. Pele, F. E. Peña Arellano, S. Penn, A. Perego, A. Pereira, T. Pereira, C. J. Perez, C. Périgois, A. Perreca, S. Perriès, J. Petermann, D. Petterson, H. P. Pfeiffer, K. A. Pham, K. S. Phukon, O. J. Piccinni, M. Pichot, M. Piendibene, F. Piergiovanni, L. Pierini, V. Pierro, G. Pillant, F. Pilo, L. Pinard, I. M. Pinto, B. J. Piotrzkowski, K. Piotrzkowski, M. Pirello, M. Pitkin, E. Placidi, W. Plastino, C. Pluchar, R. Poggiani, E. Polini, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, J. Powell, M. Pracchia, T. Pradier, A. K. Prajapati, K. Prasai, R. Prasanna, G. Pratten, T. Prestegard, M. Principe, G. A. Prodi, L. Prokhorov, P. Prosposito, L. Prudenzi, A. Puecher, M. Punturo, F. Puosi, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, P. J. Quinonez, R. Quitzow-James, F. J. Raab, G. Raaijmakers, H. Radkins, N. Radulesco, P. Raffai, S. X. Rail, S. Raja, C. Rajan, K. E. Ramirez, T. D. Ramirez, A. Ramos-Buades, J. Rana, P. Rapagnani, U. D. Rapol, B. Ratto, V. Raymond, N. Raza, M. Razzano, J. Read, L. A. Rees, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, P. Relton, P. Rettegno, F. Ricci, C. J. Richardson, J. W. Richardson, L. Richardson, P. M. Ricker, G. Riemenschneider, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, J. A. Rocha, S. Rodriguez, R. D. Rodriguez-Soto, L. Rolland, J. G. Rollins, V. J. Roma, M. Romanelli, J. D. Romano, R. Romano, C. L. Romel, A. Romero, I. M. Romero-Shaw, J. H. Romie, C. A. Rose, D. Rosińska, S. G. Rosofsky, M. P. Ross, S. Rowan, S. J. Rowlinson, Santosh Roy, Soumen Roy, D. Rozza, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, J. Sadiq, N. Sago, S. Saito, Y. Saito, K. Sakai, Y. Sakai, M. Sakellariadou, Y. Sakuno, O. S. Salafia, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, E. J. Sanchez, J. H. Sanchez, L. E. Sanchez, N. Sanchis-Gual, J. R. Sanders, A. Sanuy, T. R. Saravanan, N. Sarin, B. Sassolas, H. Satari, S. Sato, T. Sato, O. Sauter, R. L. Savage, V. Savant, T. Sawada, D. Sawant, H. L. Sawant, S. Sayah, D. Schaetzl, M. Scheel, J. Scheuer, A. Schindler-Tyka, P. Schmidt, R. Schnabel, M. Schneewind, R. M. S. Schofield, A. Schönbeck, B. W. Schulte, B. F. Schutz, E. Schwartz, J. Scott, S. M. Scott, M. Seglar-Arroyo, E. Seidel, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. Sergeev, A. S. Sengupta, N. Sennett, D. Sentenac, E. G. Seo, V. Sequino, Y. Setyawati, T. Shaffer, M. S. Shahriar, B. Shams, L. Shao, S. Sharifi, A. Sharma, P. Sharma, P. Shawhan, N. S. Shcheblanov, H. Shen, S. Shibagaki, M. Shikauchi, R. Shimizu, T. Shimoda, K. Shimode, R. Shink, H. Shinkai, T. Shishido, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, K. Shukla, S. ShyamSundar, M. Sieniawska, D. Sigg, L. P. Singer, D. Singh, N. Singh, A. Singha, A. M. Sintes, V. Sipala, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. Smetana, J. R. Smith, R. J. E. Smith, S. N. Somala, K. Somiya, E. J. Son, K. Soni, S. Soni, B. Sorazu, V. Sordini, F. Sorrentino, N. Sorrentino, H. Sotani, R. Soulard, T. Souradeep, E. Sowell, V. Spagnuolo, A. P. Spencer, M. Spera, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, D. A. Steer, J. Steinlechner, S. Steinlechner, D. J. Stops, M. Stover, K. A. Strain, L. C. Strang, G. Stratta, A. Strunk, R. Sturani, A. L. Stuver, J. Südbeck, S. Sudhagar, V. Sudhir, R. Sugimoto, H. G. Suh, T. Z. Summerscales, H. Sun, L. Sun, S. Sunil, A. Sur, J. Suresh, P. J. Sutton, Takamasa Suzuki, Toshikazu Suzuki, B. L. Swinkels, M. J. Szczepańczyk, P. Szewczyk, M. Tacca, H. Tagoshi, S. C. Tait, H. Takahashi, R. Takahashi, A. Takamori, S. Takano, H. Takeda, M. Takeda, C. Talbot, H. Tanaka, Kazuyuki Tanaka, Kenta Tanaka, Taiki Tanaka, Takahiro Tanaka, A. J. Tanasijczuk, S. Tanioka, D. B. Tanner, D. Tao, A. Tapia, E. N. Tapia San Martin, J. D. Tasson, S. Telada, R. Tenorio, L. Terkowski, M. Test, M. P. Thirugnanasambandam, M. Thomas, P. Thomas, J. E. Thompson, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, K. Toland, A. E. Tolley, T. Tomaru, Y. Tomigami, T. Tomura, M. Tonelli, A. Torres-Forné, C. I. Torrie, I. Tosta e Melo, D. Töyrä, A. Trapananti, F. Travasso, G. Traylor, M. C. Tringali, A. Tripathee, L. Troiano, A. Trovato, L. Trozzo, R. J. Trudeau, D. S. Tsai, D. Tsai, K. W. Tsang, T. Tsang, J-S. Tsao, M. Tse, R. Tso, K. Tsubono, S. Tsuchida, L. Tsukada, D. Tsuna, T. Tsutsui, T. Tsuzuki, M. Turconi, D. Tuyenbayev, A. S. Ubhi, N. Uchikata, T. Uchiyama, R. P. Udall, A. Ueda, T. Uehara, K. Ueno, G. Ueshima, D. Ugolini, C. S. Unnikrishnan, F. Uraguchi, A. L. Urban, T. Ushiba, S. A. Usman, A. C. Utina, H. Vahlbruch, G. Vajente, A. Vajpeyi, G. Valdes, M. Valentini, V. Valsan, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, N. Van Remortel, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, M. H. P. M. van Putten, M. Vardaro, A. F. Vargas, V. Varma, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, J. Venneberg, G. Venugopalan, D. Verkindt, Y. Verma, D. Veske, F. Vetrano, A. Viceré, A. D. Viets, V. Villa-Ortega, J. -Y. Vinet, S. Vitale, T. Vo, H. Vocca, E. R. G. von Reis, J. von Wrangel, C. Vorvick, S. P. Vyatchanin, L. E. Wade, M. Wade, K. J. Wagner, R. C. Walet, M. Walker, G. S. Wallace, L. Wallace, S. Walsh, J. Wang, J. Z. Wang, W. H. Wang, R. L. Ward, J. Warner, M. Was, T. Washimi, N. Y. Washington, J. Watchi, B. Weaver, L. Wei, M. Weinert, A. J. Weinstein, R. Weiss, C. M. Weller, F. Wellmann, L. Wen, P. Weßels, J. W. Westhouse, K. Wette, J. T. Whelan, D. D. White, B. F. Whiting, C. Whittle, D. Wilken, D. Williams, M. J. Williams, A. R. Williamson, J. L. Willis, B. Willke, D. J. Wilson, W. Winkler, C. C. Wipf, T. Wlodarczyk, G. Woan, J. Woehler, J. K. Wofford, I. C. F. Wong, C. Wu, D. S. Wu, H. Wu, S. Wu, D. M. Wysocki, L. Xiao, W-R. Xu, T. Yamada, H. Yamamoto, Kazuhiro Yamamoto, Kohei Yamamoto, T. Yamamoto, K. Yamashita, R. Yamazaki, F. W. Yang, L. Yang, Yang Yang, Yi Yang, Z. Yang, M. J. Yap, D. W. Yeeles, A. B. Yelikar, M. Ying, K. Yokogawa, J. Yokoyama, T. Yokozawa, A. Yoon, T. Yoshioka, Hang Yu, Haocun Yu, H. Yuzurihara, A. Zadrożny, M. Zanolin, S. Zeidler, T. Zelenova, J. -P. Zendri, M. Zevin, M. Zhan, H. Zhang, J. Zhang, L. Zhang, R. Zhang, T. Zhang, C. Zhao, G. Zhao, Yue Zhao, Yuhang Zhao, Z. Zhou, X. J. Zhu, Z. -H. Zhu, M. E. Zucker, J. Zweizig
Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB.
General Relativity and Quantum Cosmology Cosmology and Nongalactic Astrophysics
no code implementations • 27 Jan 2021 • Yue Zhao, Masato Morita, Tetsuo Sakamoto
A uniform element distribution is seen for suspended pristine aggregate glue droplets, and a differential spreading of aggregate glue components is seen for attached aggregate glue droplets.
Atomic and Molecular Clusters Applied Physics Instrumentation and Detectors
2 code implementations • 11 Jan 2021 • Yue Zhao, Zhi Qiao, Cao Xiao, Lucas Glass, Jimeng Sun
PyHealth consists of data preprocessing module, predictive modeling module, and evaluation module.
no code implementations • 1 Jan 2021 • Yue Zhao, Zhibin Yu
Here, the channel attention of target template is introduced to guide the feature learning for search branch, and then the self-spatial attention is used to localize the informative part location after the correlation processing.
no code implementations • 26 Dec 2020 • Lingming Zhang, Yue Zhao, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen
State-of-the-art methods directly concatenate the raw attributes of 3D inputs, namely coordinates and normal vectors of mesh cells, to train a single-stream network for fully-automated tooth segmentation.
1 code implementation • 1 Nov 2020 • Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu, Vincent S. Tseng, Christos Faloutsos
How can we spot money laundering in large-scale graph-like accounting datasets?
Social and Information Networks
no code implementations • 4 Oct 2020 • Shi Jin, Lei LI, Zhenli Xu, Yue Zhao
We develop a random batch Ewald (RBE) method for molecular dynamics simulations of particle systems with long-range Coulomb interactions, which achieves an $O(N)$ complexity in each step of simulating the $N$-body systems.
Computational Physics 65C35, 82M37, 65T50
1 code implementation • 22 Sep 2020 • Yue Zhao, Ryan A. Rossi, Leman Akoglu
Given an unsupervised outlier detection (OD) task on a new dataset, how can we automatically select a good outlier detection method and its hyperparameter(s) (collectively called a model)?
3 code implementations • 20 Sep 2020 • Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, Xiyang Hu
In this work, we make three key contributions, 1) propose a novel, parameter-free outlier detection algorithm with both great performance and interpretability, 2) perform extensive experiments on 30 benchmark datasets to show that COPOD outperforms in most cases and is also one of the fastest algorithms, and 3) release an easy-to-use Python implementation for reproducibility.
1 code implementation • 20 Sep 2020 • Zheng Li, Yue Zhao, Jialin Fu
A synthetic dataset is a data object that is generated programmatically, and it may be valuable to creating a single dataset from multiple sources when direct collection is difficult or costly.
1 code implementation • 18 Sep 2020 • Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, Xia Hu
We present TODS, an automated Time Series Outlier Detection System for research and industrial applications.
no code implementations • 1 Aug 2020 • Jing Shi, Zhiheng Li, Haitian Zheng, Yihang Xu, Tianyou Xiao, Weitao Tan, Xiaoning Guo, Sizhe Li, Bin Yang, Zhexin Xu, Ruitao Lin, Zhongkai Shangguan, Yue Zhao, Jingwen Wang, Rohan Sharma, Surya Iyer, Ajinkya Deshmukh, Raunak Mahalik, Srishti Singh, Jayant G Rohra, Yi-Peng Zhang, Tongyu Yang, Xuan Wen, Ethan Fahnestock, Bryce Ikeda, Ian Lawson, Alan Finkelstein, Kehao Guo, Richard Magnotti, Andrew Sexton, Jeet Ketan Thaker, Yiyang Su, Chenliang Xu
This technical report summarizes submissions and compiles from Actor-Action video classification challenge held as a final project in CSC 249/449 Machine Vision course (Spring 2020) at University of Rochester
no code implementations • CVPR 2020 • Dian Shao, Yue Zhao, Bo Dai, Dahua Lin
Current methods for action recognition primarily rely on deep convolutional networks to derive feature embeddings of visual and motion features.
no code implementations • CVPR 2020 • Dian Shao, Yue Zhao, Bo Dai, Dahua Lin
To take action recognition to a new level, we develop FineGym, a new dataset built on top of gymnastic videos.
3 code implementations • ECCV 2020 • Haodong Duan, Yue Zhao, Yuanjun Xiong, Wentao Liu, Dahua Lin
Then a joint-training strategy is proposed to deal with the domain gaps between multiple data sources and formats in webly-supervised learning.
Ranked #5 on
Action Recognition
on UCF101
(using extra training data)
no code implementations • 14 Mar 2020 • Lei Li, Zhenli Xu, Yue Zhao
The cost of the rejection step is $O(1)$ since the interaction used is of short range.
Computational Physics Numerical Analysis Numerical Analysis 82B80, 60H35, 65C05
1 code implementation • 11 Mar 2020 • Yue Zhao, Xiyang Hu, Cheng Cheng, Cong Wang, Changlin Wan, Wen Wang, Jianing Yang, Haoping Bai, Zheng Li, Cao Xiao, Yunlong Wang, Zhi Qiao, Jimeng Sun, Leman Akoglu
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples with numerous high-stake applications including fraud detection and intrusion detection.
1 code implementation • CVPR 2020 • Yue Zhao, Yuwei Wu, Caihua Chen, Andrew Lim
Armed with the Thompson Sampling, we develop a black-box attack with success rate over 95% on ModelNet40 data set.
2 code implementations • 8 Feb 2020 • Yue Zhao, Xueying Ding, Jianing Yang, Haoping Bai
In this study, we propose a three-module acceleration framework called SUOD to expedite the training and prediction with a large number of unsupervised detection models.
no code implementations • 12 Dec 2019 • Yue Zhao, John Handley
Often trained on annotated clinical notes, clinical NER models tend to struggle with tagging clinical entities in user queries because of the structural differences between clinical notes and user queries.
2 code implementations • 1 Dec 2019 • Yue Zhao, Maciej K. Hryniewicki
A new semi-supervised ensemble algorithm called XGBOD (Extreme Gradient Boosting Outlier Detection) is proposed, described and demonstrated for the enhanced detection of outliers from normal observations in various practical datasets.
1 code implementation • 23 Nov 2019 • Yue Zhao, Maciej K. Hryniewicki
Selecting and combining the outlier scores of different base detectors used within outlier ensembles can be quite challenging in the absence of ground truth.
no code implementations • 11 Nov 2019 • Jianmin Guo, Yue Zhao, Quan Zhang, Yu Jiang
Compared with the neuron coverage, the proposed state coverage metrics as guidance excel with 4. 17% to 97. 22% higher success (or generation) rate.
no code implementations • 25 Sep 2019 • Yue Zhao, Xiangsheng Huang, Ludan Kou
Although adaptive algorithms have achieved significant success in training deep neural networks with faster training speed, they tend to have poor generalization performance compared to SGD with Momentum(SGDM).
1 code implementation • 21 Sep 2019 • Yue Zhao, Xuejian Wang, Cheng Cheng, Xueying Ding
Model combination, often regarded as a key sub-field of ensemble learning, has been widely used in both academic research and industry applications.
no code implementations • NeurIPS Workshop Deep_Invers 2019 • Sichen Zhong, Yue Zhao, Jianshu Chen
In compressed sensing, a primary problem to solve is to reconstruct a high dimensional sparse signal from a small number of observations.
2 code implementations • 16 Apr 2019 • Colin Wan, Zheng Li, Alicia Guo, Yue Zhao
Synthetic population generation is the process of combining multiple socioeconomic and demographic datasets from different sources and/or granularity levels, and downscaling them to an individual level.
5 code implementations • 14 Jan 2019 • Zain Nasrullah, Yue Zhao
To this end, an established classification architecture, a Convolutional Recurrent Neural Network (CRNN), is applied to the artist20 music artist identification dataset under a comprehensive set of conditions.
4 code implementations • 6 Jan 2019 • Yue Zhao, Zain Nasrullah, Zheng Li
PyOD is an open-source Python toolbox for performing scalable outlier detection on multivariate data.
no code implementations • 26 Dec 2018 • Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi Zhang, Kai Chen
In this paper, we presented systematic solutions to build robust and practical AEs against real world object detectors.
1 code implementation • 4 Dec 2018 • Yue Zhao, Zain Nasrullah, Maciej K. Hryniewicki, Zheng Li
The top-performing base detectors in this local region are selected and combined as the model's final output.
no code implementations • NeurIPS 2018 • Yue Zhao, Yuanjun Xiong, Dahua Lin
How to leverage the temporal dimension is a key question in video analysis.
no code implementations • ECCV 2018 • Dian Shao, Yu Xiong, Yue Zhao, Qingqiu Huang, Yu Qiao, Dahua Lin
The thriving of video sharing services brings new challenges to video retrieval, e. g. the rapid growth in video duration and content diversity.
1 code implementation • 28 Aug 2018 • Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, Jiaguang Sun
Deep learning (DL) systems are increasingly applied to safety-critical domains such as autonomous driving cars.
Software Engineering
no code implementations • ACL 2018 • Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, Xue-Qi Cheng
Document-level information is very important for event detection even at sentence level.
1 code implementation • 2 Jun 2018 • Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vikas Chandra
Experiments show that accuracy can be increased by 30% for the CIFAR-10 dataset with only 5% globally shared data.
no code implementations • CVPR 2018 • Yue Zhao, Yuanjun Xiong, Dahua Lin
Despite the remarkable progress in action recognition over the past several years, existing methods remain limited in efficiency and effectiveness.
no code implementations • ECCV 2018 • Lan Wang, Chenqiang Gao, Luyu Yang, Yue Zhao, WangMeng Zuo, Deyu Meng
As a result, using partial data channels to build a full representation of multi-modalities is clearly desired.
no code implementations • 24 Jan 2018 • Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen, Shengzhi Zhang, Heqing Huang, Xiao-Feng Wang, Carl A. Gunter
For this purpose, we developed novel techniques that address a key technical challenge: integrating the commands into a song in a way that can be effectively recognized by ASR through the air, in the presence of background noise, while not being detected by a human listener.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 21 Oct 2017 • Yue Zhao, Jianshu Chen, H. Vincent Poor
Identifying a potentially large number of simultaneous line outages in power transmission networks in real time is a computationally hard problem.
6 code implementations • ICCV 2017 • Yue Zhao, Yuanjun Xiong, Li-Min Wang, Zhirong Wu, Xiaoou Tang, Dahua Lin
Detecting actions in untrimmed videos is an important yet challenging task.
Ranked #6 on
Action Recognition
on THUMOS’14
1 code implementation • 8 Mar 2017 • Yuanjun Xiong, Yue Zhao, Li-Min Wang, Dahua Lin, Xiaoou Tang
Detecting activities in untrimmed videos is an important but challenging task.
Ranked #23 on
Temporal Action Localization
on ActivityNet-1.3
no code implementations • 5 Aug 2015 • Yankui Sun, Tian Zhang, Yue Zhao, Yufan He
We present here a novel 3D automatic segmentation method for retinal OCT volume data.
no code implementations • 28 May 2013 • Marten Wegkamp, Yue Zhao
Then we study a factor model of $\Sigma$, for which we propose a refined estimator $\widetilde{\Sigma}$ by fitting a low-rank matrix plus a diagonal matrix to $\hat{\Sigma}$ using least squares with a nuclear norm penalty on the low-rank matrix.