no code implementations • ECNLP (ACL) 2022 • Zeming Wang, Yanyan Zou, Yuejian Fang, Hongshen Chen, Mian Ma, Zhuoye Ding, Bo Long
As the multi-modal e-commerce is thriving, high-quality advertising product copywriting has gain more attentions, which plays a crucial role in the e-commerce recommender, advertising and even search platforms. The advertising product copywriting is able to enhance the user experience by highlighting the product’s characteristics with textual descriptions and thus to improve the likelihood of user click and purchase.
no code implementations • 24 Dec 2024 • Guochen Yan, Luyuan Xie, Xinyi Gao, Wentao Zhang, Qingni Shen, Yuejian Fang, Zhonghai Wu
Specifically, on the client side, we condense the knowledge of each client into a small dataset and further enhance the condensation procedure with latent distribution constraints, facilitating the effective capture of high-quality knowledge.
no code implementations • 18 Nov 2024 • Guochen Yan, Xunkai Li, Luyuan Xie, Wentao Zhang, Qingni Shen, Yuejian Fang, Zhonghai Wu
Specifically, for effective graph learning in one communication round, our method estimates and aggregates class-wise feature distribution statistics to construct a global pseudo-graph on the server, facilitating the training of a global graph model.
no code implementations • 29 Jun 2024 • Luyuan Xie, Manqing Lin, Chenming Xu, Tianyu Luan, Zhipeng Zeng, Wenjun Qian, Cong Li, Yuejian Fang, Qingni Shen, Zhonghai Wu
In the evolving application of medical artificial intelligence, federated learning is notable for its ability to protect training data privacy.
no code implementations • 29 Jun 2024 • Luyuan Xie, Manqing Lin, Siyuan Liu, Chenming Xu, Tianyu Luan, Cong Li, Yuejian Fang, Qingni Shen, Zhonghai Wu
In medical image segmentation, personalized cross-silo federated learning (FL) is becoming popular for utilizing varied data across healthcare settings to overcome data scarcity and privacy concerns.
no code implementations • 10 May 2024 • Luyuan Xie, Manqing Lin, Tianyu Luan, Cong Li, Yuejian Fang, Qingni Shen, Zhonghai Wu
Federated learning is widely used in medical applications for training global models without needing local data access.
1 code implementation • 20 Feb 2024 • Che Zhang, Zhenyang Xiao, Chengcheng Han, Yixin Lian, Yuejian Fang
In this paper, we aim to enhance the self-checking capabilities of LLMs by constructing training data for checking tasks.
no code implementations • 6 Jan 2024 • Luyuan Xie, Cong Li, Xin Zhang, Shengfang Zhai, Yuejian Fang, Qingni Shen, Zhonghai Wu
Representation learning frameworks in unlabeled time series have been proposed for medical signal processing.
1 code implementation • 7 May 2023 • Shengfang Zhai, Yinpeng Dong, Qingni Shen, Shi Pu, Yuejian Fang, Hang Su
To gain a better understanding of the training process and potential risks of text-to-image synthesis, we perform a systematic investigation of backdoor attack on text-to-image diffusion models and propose BadT2I, a general multimodal backdoor attack framework that tampers with image synthesis in diverse semantic levels.
no code implementations • 3 Mar 2023 • Shengfang Zhai, Qingni Shen, Xiaoyi Chen, Weilong Wang, Cong Li, Yuejian Fang, Zhonghai Wu
At present, backdoor attacks attract attention as they do great harm to deep learning models.
no code implementations • 21 Feb 2023 • Xiaodong Wang, Chenfei Wu, Shengming Yin, Minheng Ni, JianFeng Wang, Linjie Li, Zhengyuan Yang, Fan Yang, Lijuan Wang, Zicheng Liu, Yuejian Fang, Nan Duan
3D photography renders a static image into a video with appealing 3D visual effects.
Ranked #1 on
Image Outpainting
on MSCOCO
1 code implementation • COLING 2022 • Kunbo Ding, Weijie Liu, Yuejian Fang, Weiquan Mao, Zhe Zhao, Tao Zhu, Haoyan Liu, Rong Tian, Yiren Chen
Existing zero-shot cross-lingual transfer methods rely on parallel corpora or bilingual dictionaries, which are expensive and impractical for low-resource languages.
1 code implementation • Findings (NAACL) 2022 • Kunbo Ding, Weijie Liu, Yuejian Fang, Zhe Zhao, Qi Ju, Xuefeng Yang
Previous studies have proved that cross-lingual knowledge distillation can significantly improve the performance of pre-trained models for cross-lingual similarity matching tasks.
1 code implementation • 20 Jul 2022 • Chenfei Wu, Jian Liang, Xiaowei Hu, Zhe Gan, JianFeng Wang, Lijuan Wang, Zicheng Liu, Yuejian Fang, Nan Duan
In this paper, we present NUWA-Infinity, a generative model for infinite visual synthesis, which is defined as the task of generating arbitrarily-sized high-resolution images or long-duration videos.
Ranked #1 on
Image Outpainting
on LHQC
1 code implementation • 24 Nov 2021 • Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Daxin Jiang, Nan Duan
To cover language, image, and video at the same time for different scenarios, a 3D transformer encoder-decoder framework is designed, which can not only deal with videos as 3D data but also adapt to texts and images as 1D and 2D data, respectively.
Ranked #1 on
Text-to-Video Generation
on Kinetics
1 code implementation • 5 Aug 2021 • Weijiang Yu, Jian Liang, Lei Ji, Lu Li, Yuejian Fang, Nong Xiao, Nan Duan
Firstly, we develop multi-commonsense learning for semantic-level reasoning by jointly training different commonsense types in a unified network, which encourages the interaction between the clues of multiple commonsense descriptions, event-wise captions and videos.
no code implementations • 16 Aug 2019 • Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang, Ming Zhou
We propose Unicoder-VL, a universal encoder that aims to learn joint representations of vision and language in a pre-training manner.
Ranked #5 on
Image-to-Text Retrieval
on MS COCO
(Recall@10 metric)