no code implementations • ECCV 2020 • Xinpeng Xie, Jia-Wei Chen, Yuexiang Li, Linlin Shen, Kai Ma, Yefeng Zheng
Recent generative adversarial network (GAN) based methods (e. g., CycleGAN) are prone to fail at preserving image-objects in image-to-image translation, which reduces their practicality on tasks such as domain adaptation.
no code implementations • ECCV 2020 • Shuo Wang, Yuexiang Li, Kai Ma, Ruhui Ma, Haibing Guan, Yefeng Zheng
In this paper, we investigate the overlapping problem of recent uncertainty-based approaches and propose to alleviate the issue by taking representativeness into consideration.
1 code implementation • 2 Mar 2023 • Haozhe Liu, Wentian Zhang, Bing Li, Haoqian Wu, Nanjun He, Yawen Huang, Yuexiang Li, Bernard Ghanem, Yefeng Zheng
The evaluation results demonstrate that our AdaptiveMix can facilitate the training of GANs and effectively improve the image quality of generated samples.
1 code implementation • 28 Feb 2023 • Minghao Zhou, Hong Wang, Qian Zhao, Yuexiang Li, Yawen Huang, Deyu Meng, Yefeng Zheng
Against this issue, in this paper, we propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
no code implementations • 3 Jan 2023 • Yuexiang Li, Yawen Huang, Nanjun He, Kai Ma, Yefeng Zheng
The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
1 code implementation • 26 Dec 2022 • Hong Wang, Qi Xie, Yuexiang Li, Yawen Huang, Deyu Meng, Yefeng Zheng
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts in the captured CT images and then impair the clinical treatment.
1 code implementation • 26 Oct 2022 • Haozhe Liu, Wentian Zhang, Jinheng Xie, Haoqian Wu, Bing Li, Ziqi Zhang, Yuexiang Li, Yawen Huang, Bernard Ghanem, Yefeng Zheng
Since the observation is that noise-prone regions such as textural and clutter backgrounds are adverse to the generalization ability of CNN models during training, we enhance features from discriminative regions and suppress noise-prone ones when combining an image pair.
1 code implementation • 5 Sep 2022 • Haoqin Ji, Haozhe Liu, Yuexiang Li, Jinheng Xie, Nanjun He, Yawen Huang, Dong Wei, Xinrong Chen, Linlin Shen, Yefeng Zheng
Such a point annotation setting can provide weakly instance-level information for abnormality localization with a marginal annotation cost.
1 code implementation • 25 Aug 2022 • Haozhe Liu, Bing Li, Haoqian Wu, Hanbang Liang, Yawen Huang, Yuexiang Li, Bernard Ghanem, Yefeng Zheng
In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs.
1 code implementation • 6 Jun 2022 • Yao Zhang, Nanjun He, Jiawei Yang, Yuexiang Li, Dong Wei, Yawen Huang, Yang Zhang, Zhiqiang He, Yefeng Zheng
Concretely, we propose a novel multimodal Medical Transformer (mmFormer) for incomplete multimodal learning with three main components: the hybrid modality-specific encoders that bridge a convolutional encoder and an intra-modal Transformer for both local and global context modeling within each modality; an inter-modal Transformer to build and align the long-range correlations across modalities for modality-invariant features with global semantics corresponding to tumor region; a decoder that performs a progressive up-sampling and fusion with the modality-invariant features to generate robust segmentation.
1 code implementation • 16 May 2022 • Hong Wang, Yuexiang Li, Deyu Meng, Yefeng Zheng
By unfolding every iterative substep of the proposed algorithm into a network module, we explicitly embed the prior structure into a deep network, \emph{i. e.,} a clear interpretability for the MAR task.
1 code implementation • 16 May 2022 • Haozhe Liu, Haoqin Ji, Yuexiang Li, Nanjun He, Haoqian Wu, Feng Liu, Linlin Shen, Yefeng Zheng
With the regularization and orthogonal classifier, a more compact embedding space can be obtained, which accordingly improves the model robustness against adversarial attacks.
no code implementations • 12 Mar 2022 • Heqin Zhu, Xu sun, Yuexiang Li, Kai Ma, S. Kevin Zhou, Yefeng Zheng
This paper, for the first time, seeks to expand the applicability of depth supervision to the Transformer architecture.
1 code implementation • 4 Mar 2022 • Hong Liu, Dong Wei, Donghuan Lu, Yuexiang Li, Kai Ma, Liansheng Wang, Yefeng Zheng
To the best of our knowledge, this is the first study that attempts 3D retinal layer segmentation in volumetric OCT images based on CNNs.
no code implementations • 16 Feb 2022 • Yi Lin, Zhiyong Qu, Hao Chen, Zhongke Gao, Yuexiang Li, Lili Xia, Kai Ma, Yefeng Zheng, Kwang-Ting Cheng
Third, a self-supervised visual representation learning method is tailored for nuclei segmentation of pathology images that transforms the hematoxylin component images into the H\&E stained images to gain better understanding of the relationship between the nuclei and cytoplasm.
1 code implementation • 22 Jan 2022 • Guoyang Xie, Jinbao Wang, Yawen Huang, Yuexiang Li, Yefeng Zheng, Feng Zheng, Yaochu Jin
There is a clear need to launch a federated learning and facilitate the integration of the dispersed data from different institutions.
no code implementations • 31 Dec 2021 • Quanziang Wang, Yuexiang Li, Dong Wei, Renzhen Wang, Kai Ma, Yefeng Zheng, Deyu Meng
These approaches save a small part of the data of the past tasks as a memory buffer to prevent models from forgetting previously learned knowledge.
1 code implementation • 23 Dec 2021 • Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Meng, Yefeng Zheng
To alleviate these issues, in the paper, we construct a novel deep unfolding dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
no code implementations • 17 Oct 2021 • Ziqi Zhang, Yuexiang Li, Hongxin Wei, Kai Ma, Tao Xu, Yefeng Zheng
The hard samples, which are beneficial for classifier learning, are often mistakenly treated as noises in such a setting since both the hard samples and ones with noisy labels lead to a relatively larger loss value than the easy cases.
1 code implementation • 11 Sep 2021 • Hong Wang, Yuexiang Li, Haimiao Zhang, Jiawei Chen, Kai Ma, Deyu Meng, Yefeng Zheng
For the task of metal artifact reduction (MAR), although deep learning (DL)-based methods have achieved promising performances, most of them suffer from two problems: 1) the CT imaging geometry constraint is not fully embedded into the network during training, leaving room for further performance improvement; 2) the model interpretability is lack of sufficient consideration.
1 code implementation • 14 Jul 2021 • Hong Wang, Qi Xie, Qian Zhao, Yuexiang Li, Yong Liang, Yefeng Zheng, Deyu Meng
To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability.
no code implementations • 30 Jun 2021 • Jiawei Chen, Yuexiang Li, Kai Ma, Yefeng Zheng
In practical applications, the outdoor weather and illumination are changeable, e. g., cloudy and nighttime, which results in a significant drop of semantic segmentation accuracy of CNN only trained with daytime data.
no code implementations • 27 Jun 2021 • Quanziang Wang, Renzhen Wang, Yuexiang Li, Kai Ma, Yefeng Zheng, Deyu Meng
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects, and accordingly boosts the accuracy of medical image segmentation.
no code implementations • 14 Dec 2020 • Jiuwen Zhu, Yuexiang Li, S. Kevin Zhou
Then, in self-aggregative SSL, we propose to self-complement an existing proxy task with an auxiliary loss function based on a linear centered kernel alignment metric, which explicitly promotes the exploring of where are uncovered by the features learned from a proxy task at hand to further boost the modeling capability.
no code implementations • 22 Jul 2020 • Xinpeng Xie, Jia-Wei Chen, Yuexiang Li, Linlin Shen, Kai Ma, Yefeng Zheng
Domain shift between medical images from multicentres is still an open question for the community, which degrades the generalization performance of deep learning models.
no code implementations • 22 Jul 2020 • Xinpeng Xie, Jia-Wei Chen, Yuexiang Li, Linlin Shen, Kai Ma, Yefeng Zheng
Due to the wide existence and large morphological variances of nuclei, accurate nuclei instance segmentation is still one of the most challenging tasks in computational pathology.
no code implementations • 20 Jul 2020 • Yuexiang Li, Jia-Wei Chen, Xinpeng Xie, Kai Ma, Yefeng Zheng
A novel pseudo-label (namely self-loop uncertainty), generated by recurrently optimizing the neural network with a self-supervised task, is adopted as the ground-truth for the unlabeled images to augment the training set and boost the segmentation accuracy.
no code implementations • 17 Jul 2020 • Xing Tao, Yuexiang Li, Wenhui Zhou, Kai Ma, Yefeng Zheng
In this paper, we propose a novel self-supervised learning framework for volumetric medical images.
no code implementations • 10 Jun 2020 • Jiuwen Zhu, Yuexiang Li, Yifan Hu, S. Kevin Zhou
To this end, self-supervised learning (SSL), as a potential solution for deficient annotated data, attracts increasing attentions from the community.
no code implementations • 5 May 2020 • Huazhu Fu, Fei Li, Xu sun, Xingxing Cao, Jingan Liao, Jose Ignacio Orlando, Xing Tao, Yuexiang Li, Shihao Zhang, Mingkui Tan, Chenglang Yuan, Cheng Bian, Ruitao Xie, Jiongcheng Li, Xiaomeng Li, Jing Wang, Le Geng, Panming Li, Huaying Hao, Jiang Liu, Yan Kong, Yongyong Ren, Hrvoje Bogunovic, Xiulan Zhang, Yanwu Xu
To address this, we organized the Angle closure Glaucoma Evaluation challenge (AGE), held in conjunction with MICCAI 2019.
no code implementations • 17 Apr 2020 • Jiawei Chen, Yuexiang Li, Kai Ma, Yefeng Zheng
Two colonoscopic datasets from different centres, i. e., CVC-Clinic and ETIS-Larib, are adopted to evaluate the performance of domain adaptation of our VideoGAN.
no code implementations • 5 Oct 2019 • Xinrui Zhuang, Yuexiang Li, Yifan Hu, Kai Ma, Yujiu Yang, Yefeng Zheng
Witnessed the development of deep learning, increasing number of studies try to build computer aided diagnosis systems for 3D volumetric medical data.
no code implementations • 5 Jun 2019 • Yu Chen, Jia-Wei Chen, Dong Wei, Yuexiang Li, Yefeng Zheng
Two approaches are widely used in the literature to fuse multiple modalities in the segmentation networks: early-fusion (which stacks multiple modalities as different input channels) and late-fusion (which fuses the segmentation results from different modalities at the very end).
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.
no code implementations • 6 Jul 2018 • Yuexiang Li, Xinpeng Xie, Linlin Shen, Shaoxiong Liu
However, the usage of deep learning networks for the pathological image analysis encounters several challenges, e. g. high resolution (gigapixel) of pathological images and lack of annotations of cancer areas.
no code implementations • 18 Apr 2018 • Xinpeng Xie, Yuexiang Li, Linlin Shen
Our RAL is applied to the training set of a simple convolutional neural network (CNN) to remove mislabeled images.
no code implementations • 2 Mar 2017 • Yuexiang Li, Linlin Shen
In this paper, we proposed two deep learning methods to address all the three tasks announced in ISIC 2017, i. e. lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3).