no code implementations • 10 Mar 2023 • Junyu Chen, Yihao Liu, Yufan He, Yong Du
In the past, optimization-based registration models have used spatially-varying regularization to account for deformation variations in different image regions.
no code implementations • 10 Mar 2023 • Junyu Chen, Yihao Liu, Yufan He, Yong Du
Transformers have recently shown promise for medical image applications, leading to an increasing interest in developing such models for medical image registration.
1 code implementation • 4 Nov 2022 • M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng
For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e. g. geometry, physiology, physics) of medical data being processed.
1 code implementation • 22 Sep 2022 • Andriy Myronenko, Md Mahfuzur Rahman Siddiquee, Dong Yang, Yufan He, Daguang Xu
Head and neck tumor segmentation challenge (HECKTOR) 2022 offers a platform for researchers to compare their solutions to segmentation of tumors and lymph nodes from 3D CT and PET images.
no code implementations • 21 Sep 2022 • Md Mahfuzur Rahman Siddiquee, Dong Yang, Yufan He, Daguang Xu, Andriy Myronenko
Intracranial hemorrhage segmentation challenge (INSTANCE 2022) offers a platform for researchers to compare their solutions to segmentation of hemorrhage stroke regions from 3D CTs.
no code implementations • 20 Sep 2022 • Md Mahfuzur Rahman Siddique, Dong Yang, Yufan He, Daguang Xu, Andriy Myronenko
Ischemic Stroke Lesion Segmentation challenge (ISLES 2022) offers a platform for researchers to compare their solutions to 3D segmentation of ischemic stroke regions from 3D MRIs.
no code implementations • CVPR 2022 • Cheng Peng, Andriy Myronenko, Ali Hatamizadeh, Vish Nath, Md Mahfuzur Rahman Siddiquee, Yufan He, Daguang Xu, Rama Chellappa, Dong Yang
Given the recent success of deep learning in medical image segmentation, Neural Architecture Search (NAS) has been introduced to find high-performance 3D segmentation network architectures.
1 code implementation • 19 Nov 2021 • Junyu Chen, Eric C. Frey, Yufan He, William P. Segars, Ye Li, Yong Du
Recently Vision Transformer architectures have been proposed to address the shortcomings of ConvNets and have produced state-of-the-art performances in many medical imaging applications.
1 code implementation • 13 Apr 2021 • Junyu Chen, Yufan He, Eric C. Frey, Ye Li, Yong Du
However, the performances of ConvNets are still limited by lacking the understanding of long-range spatial relations in an image.
1 code implementation • CVPR 2021 • Yufan He, Dong Yang, Holger Roth, Can Zhao, Daguang Xu
In this work, we focus on three important aspects of NAS in 3D medical image segmentation: flexible multi-path network topology, high search efficiency, and budgeted GPU memory usage.
no code implementations • 24 Mar 2021 • Lianrui Zuo, Blake E. Dewey, Aaron Carass, Yihao Liu, Yufan He, Peter A. Calabresi, Jerry L. Prince
Accuracy and consistency are two key factors in computer-assisted magnetic resonance (MR) image analysis.
1 code implementation • 7 Jul 2020 • Yufan He, Aaron Carass, Lianrui Zuo, Blake E. Dewey, Jerry L. Prince
However, training a model for each target domain is time consuming and computationally expensive, even infeasible when target domain data are scarce or source data are unavailable due to data privacy.
1 code implementation • 11 Feb 2020 • Jacob C. Reinhold, Yufan He, Shizhong Han, Yunqiang Chen, Dashan Gao, Junghoon Lee, Jerry L. Prince, Aaron Carass
Medical images are increasingly used as input to deep neural networks to produce quantitative values that aid researchers and clinicians.
2 code implementations • 11 Feb 2020 • Jacob C. Reinhold, Yufan He, Shizhong Han, Yunqiang Chen, Dashan Gao, Junghoon Lee, Jerry L. Prince, Aaron Carass
Medical images are often used to detect and characterize pathology and disease; however, automatically identifying and segmenting pathology in medical images is challenging because the appearance of pathology across diseases varies widely.
no code implementations • 14 Mar 2018 • Yufan He, Aaron Carass, Bruno M. Jedynak, Sharon D. Solomon, Shiv Saidha, Peter A. Calabresi, Jerry L. Prince
Optical coherence tomography (OCT) is a noninvasive imaging modality which can be used to obtain depth images of the retina.
no code implementations • 5 Aug 2015 • Yankui Sun, Tian Zhang, Yue Zhao, Yufan He
We present here a novel 3D automatic segmentation method for retinal OCT volume data.