Search Results for author: Yuhang Jiang

Found 6 papers, 1 papers with code

Wasserstein Unsupervised Reinforcement Learning

no code implementations15 Oct 2021 Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, Xiangyang Ji

These pre-trained policies can accelerate learning when endowed with external reward, and can also be used as primitive options in hierarchical reinforcement learning.

Hierarchical Reinforcement Learning Unsupervised Reinforcement Learning

Reducing Conservativeness Oriented Offline Reinforcement Learning

no code implementations27 Feb 2021 Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, Xiangyang Ji

In offline reinforcement learning, a policy learns to maximize cumulative rewards with a fixed collection of data.

Credit Assignment with Meta-Policy Gradient for Multi-Agent Reinforcement Learning

no code implementations24 Feb 2021 Jianzhun Shao, Hongchang Zhang, Yuhang Jiang, Shuncheng He, Xiangyang Ji

Reward decomposition is a critical problem in centralized training with decentralized execution~(CTDE) paradigm for multi-agent reinforcement learning.

Meta-Learning Multi-agent Reinforcement Learning +2

Deep learning for video game genre classification

no code implementations21 Nov 2020 Yuhang Jiang, Lukun Zheng

Video game genre classification based on its cover and textual description would be utterly beneficial to many modern identification, collocation, and retrieval systems.

Classification General Classification +1

Fast Hardware-Aware Neural Architecture Search

1 code implementation25 Oct 2019 Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, Yunxin Liu

Unlike previous approaches that apply search algorithms on a small, human-designed search space without considering hardware diversity, we propose HURRICANE that explores the automatic hardware-aware search over a much larger search space and a two-stage search algorithm, to efficiently generate tailored models for different types of hardware.

Neural Architecture Search

Cannot find the paper you are looking for? You can Submit a new open access paper.