no code implementations • 22 Jul 2024 • Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny Kharlamov, Shu Zhao, Jie Tang
In this paper, we propose P2TAG, a framework designed for few-shot node classification on TAGs with graph pre-training and prompting.
no code implementations • 4 Jul 2024 • Yufei He, Zhenyu Hou, Yukuo Cen, Feng He, Xu Cheng, Bryan Hooi
Extensive experiments have demonstrated that our framework can perform pre-training on real-world web-scale graphs with over 540 million nodes and 12 billion edges and generalizes effectively to unseen new graphs with different downstream tasks.
no code implementations • 5 Jun 2024 • Zhenyu Hou, Haozhan Li, Yukuo Cen, Jie Tang, Yuxiao Dong
Graph self-supervised learning (SSL) holds considerable promise for mining and learning with graph-structured data.
no code implementations • 27 Feb 2024 • Zhen Yang, Ming Ding, Tinglin Huang, Yukuo Cen, Junshuai Song, Bin Xu, Yuxiao Dong, Jie Tang
Is there a general framework that can incorporate all existing negative sampling methods?
1 code implementation • 25 Feb 2024 • Fanjin Zhang, Kun Cao, Yukuo Cen, Jifan Yu, Da Yin, Jie Tang
Tracing the source of research papers is a fundamental yet challenging task for researchers.
1 code implementation • 24 Feb 2024 • Fanjin Zhang, Shijie Shi, Yifan Zhu, Bo Chen, Yukuo Cen, Jifan Yu, Yelin Chen, Lulu Wang, Qingfei Zhao, Yuqing Cheng, Tianyi Han, Yuwei An, Dan Zhang, Weng Lam Tam, Kun Cao, Yunhe Pang, Xinyu Guan, Huihui Yuan, Jian Song, Xiaoyan Li, Yuxiao Dong, Jie Tang
We envisage that OAG-Bench can serve as a common ground for the community to evaluate and compare algorithms in academic graph mining, thereby accelerating algorithm development and advancement in this field.
1 code implementation • 6 Jun 2023 • Zhen Yang, Tinglin Huang, Ming Ding, Yuxiao Dong, Rex Ying, Yukuo Cen, Yangliao Geng, Jie Tang
To make each mini-batch have fewer false negatives, we design the proximity graph of randomly-selected instances.
2 code implementations • 10 Apr 2023 • Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, Jie Tang
Graph self-supervised learning (SSL), including contrastive and generative approaches, offers great potential to address the fundamental challenge of label scarcity in real-world graph data.
1 code implementation • 16 Aug 2022 • Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong, Jie Tang
In this work, we present the Knowledge Graph Transformer (kgTransformer) with masked pre-training and fine-tuning strategies.
1 code implementation • 22 Jun 2022 • Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, Alvin Cheung
Training large neural network (NN) models requires extensive memory resources, and Activation Compressed Training (ACT) is a promising approach to reduce training memory footprint.
1 code implementation • 28 May 2022 • Ziang Li, Ming Ding, Weikai Li, Zihan Wang, Ziyu Zeng, Yukuo Cen, Jie Tang
graph benchmark (IGB) consisting of 4 datasets.
3 code implementations • 22 May 2022 • Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, Jie Tang
Despite this, contrastive learning-which heavily relies on structural data augmentation and complicated training strategies-has been the dominant approach in graph SSL, while the progress of generative SSL on graphs, especially graph autoencoders (GAEs), has thus far not reached the potential as promised in other fields.
Ranked #1 on Node Classification on Cora: fixed 20 node per class
4 code implementations • 8 Dec 2021 • Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, Wenzheng Feng, Yuxiao Dong, Xu Cheng, Hongyun Cai, Feng He, Jie Tang
However, it is unclear how to best design the generalization strategies in GNNs, as it works in a semi-supervised setting for graph data.
Ranked #3 on Node Property Prediction on ogbn-papers100M
1 code implementation • 8 Nov 2021 • Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, Jie Tang
To bridge this gap, we present the Graph Robustness Benchmark (GRB) with the goal of providing a scalable, unified, modular, and reproducible evaluation for the adversarial robustness of GML models.
1 code implementation • 1 Mar 2021 • Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu, Hengrui Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang Yang, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, Jie Tang
In CogDL, we propose a unified design for the training and evaluation of GNN models for various graph tasks, making it unique among existing graph learning libraries.
no code implementations • 1 Jan 2021 • Jiezhong Qiu, Yukuo Cen, Qibin Chen, Chang Zhou, Jingren Zhou, Hongxia Yang, Jie Tang
Based on the theoretical analysis, we propose Local Clustering Graph Neural Networks (LCGNN), a GNN learning paradigm that utilizes local clustering to efficiently search for small but compact subgraphs for GNN training and inference.
2 code implementations • 19 May 2020 • Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang
Recent works usually give an overall embedding from a user's behavior sequence.
1 code implementation • IJCNLP 2019 • Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang, Jie Tang
In this paper, we propose a novel end-to-end framework called KBRD, which stands for Knowledge-Based Recommender Dialog System.
Ranked #5 on Text Generation on ReDial
4 code implementations • 5 May 2019 • Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, Jie Tang
Network embedding (or graph embedding) has been widely used in many real-world applications.
Ranked #1 on Link Prediction on Alibaba