Search Results for author: Yulong Pei

Found 18 papers, 10 papers with code

FAL-CUR: Fair Active Learning using Uncertainty and Representativeness on Fair Clustering

no code implementations21 Sep 2022 Ricky Fajri, Akrati Saxena, Yulong Pei, Mykola Pechenizkiy

This paper presents a novel active learning strategy called Fair Active Learning using fair Clustering, Uncertainty, and Representativeness (FAL-CUR) that provides a high accuracy while maintaining fairness during the sample acquisition phase.

Active Learning Fairness

Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network Training

no code implementations30 May 2022 Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy, Decebal Constantin Mocanu, Shiwei Liu

Recent works on sparse neural network training (sparse training) have shown that a compelling trade-off between performance and efficiency can be achieved by training intrinsically sparse neural networks from scratch.

Semantic-Based Few-Shot Learning by Interactive Psychometric Testing

no code implementations16 Dec 2021 Lu Yin, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy

In this work, we advance the few-shot learning towards this more challenging scenario, the semantic-based few-shot learning, and propose a method to address the paradigm by capturing the inner semantic relationships using interactive psychometric learning.

Few-Shot Learning

A Comparative Study on Robust Graph Neural Networks to Structural Noises

1 code implementation11 Dec 2021 Zeyu Zhang, Yulong Pei

Although a series of robust GNNs have been proposed, they are evaluated with different structural noises, and it lacks a systematic comparison with consistent settings.

Calibrated Adversarial Training

1 code implementation1 Oct 2021 Tianjin Huang, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy

In this paper, we present the Calibrated Adversarial Training, a method that reduces the adverse effects of semantic perturbations in adversarial training.

Direction-Aggregated Attack for Transferable Adversarial Examples

1 code implementation19 Apr 2021 Tianjin Huang, Vlado Menkovski, Yulong Pei, Yuhao Wang, Mykola Pechenizkiy

Deep neural networks are vulnerable to adversarial examples that are crafted by imposing imperceptible changes to the inputs.

Hop-Count Based Self-Supervised Anomaly Detection on Attributed Networks

1 code implementation16 Apr 2021 Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy

Although various approaches have been proposed to solve this problem, two major limitations exist: (1) unsupervised approaches usually work much less efficiently due to the lack of supervisory signal, and (2) existing anomaly detection methods only use local contextual information to detect anomalous nodes, e. g., one- or two-hop information, but ignore the global contextual information.

Self-Supervised Anomaly Detection

Selfish Sparse RNN Training

1 code implementation22 Jan 2021 Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, Mykola Pechenizkiy

Sparse neural networks have been widely applied to reduce the computational demands of training and deploying over-parameterized deep neural networks.

Bridging the Performance Gap between FGSM and PGD Adversarial Training

1 code implementation7 Nov 2020 Tianjin Huang, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy

In addition, it achieves comparable performance of adversarial robustness on MNIST dataset under white-box attack, and it achieves better performance than adv. PGD under white-box attack and effectively defends the transferable adversarial attack on CIFAR-10 dataset.

Adversarial Attack Adversarial Robustness

ResGCN: Attention-based Deep Residual Modeling for Anomaly Detection on Attributed Networks

1 code implementation30 Sep 2020 Yulong Pei, Tianjin Huang, Werner van Ipenburg, Mykola Pechenizkiy

Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection.

Anomaly Detection Intrusion Detection

Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware

4 code implementations26 Jan 2019 Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei, Mykola Pechenizkiy

Despite the success of ANNs, it is challenging to train and deploy modern ANNs on commodity hardware due to the ever-increasing model size and the unprecedented growth in the data volumes.

struc2gauss: Structural Role Preserving Network Embedding via Gaussian Embedding

no code implementations25 May 2018 Yulong Pei, Xin Du, Jianpeng Zhang, George Fletcher, Mykola Pechenizkiy

Almost all previous methods represent a node into a point in space and focus on local structural information, i. e., neighborhood information.

Network Embedding

Cannot find the paper you are looking for? You can Submit a new open access paper.