no code implementations • 9 Jun 2024 • Yunchao Zhang, Guandao Yang, Leonidas Guibas, Yanchao Yang
In particular, it can be challenging to animate and move objects in the scene, which requires coordination among many Gaussians.
1 code implementation • 29 Mar 2023 • Yuxuan Cao, Jiarong Xu, Carl Yang, Jiaan Wang, Yunchao Zhang, Chunping Wang, Lei Chen, Yang Yang
All convex combinations of graphon bases give rise to a generator space, from which graphs generated form the solution space for those downstream data that can benefit from pre-training.
no code implementations • 27 Nov 2022 • Yunchao Zhang, Zonglin Di, Kaiwen Zhou, Cihang Xie, Xin Eric Wang
However, since the local data is inaccessible to the server under federated learning, attackers may easily poison the training data of the local client to build a backdoor in the agent without notice.
1 code implementation • NeurIPS 2023 • Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, Lei Chen
In this paper, we introduce a universal prompt-based tuning method called Graph Prompt Feature (GPF) for pre-trained GNN models under any pre-training strategy.
1 code implementation • 8 May 2020 • Abdelrahman Abdelhamed, Mahmoud Afifi, Radu Timofte, Michael S. Brown, Yue Cao, Zhilu Zhang, WangMeng Zuo, Xiaoling Zhang, Jiye Liu, Wendong Chen, Changyuan Wen, Meng Liu, Shuailin Lv, Yunchao Zhang, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Xiyu Yu, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Songhyun Yu, Bumjun Park, Jechang Jeong, Shuai Liu, Ziyao Zong, Nan Nan, Chenghua Li, Zengli Yang, Long Bao, Shuangquan Wang, Dongwoon Bai, Jungwon Lee, Youngjung Kim, Kyeongha Rho, Changyeop Shin, Sungho Kim, Pengliang Tang, Yiyun Zhao, Yuqian Zhou, Yuchen Fan, Thomas Huang, Zhihao LI, Nisarg A. Shah, Wei Liu, Qiong Yan, Yuzhi Zhao, Marcin Możejko, Tomasz Latkowski, Lukasz Treszczotko, Michał Szafraniuk, Krzysztof Trojanowski, Yanhong Wu, Pablo Navarrete Michelini, Fengshuo Hu, Yunhua Lu, Sujin Kim, Wonjin Kim, Jaayeon Lee, Jang-Hwan Choi, Magauiya Zhussip, Azamat Khassenov, Jong Hyun Kim, Hwechul Cho, Priya Kansal, Sabari Nathan, Zhangyu Ye, Xiwen Lu, Yaqi Wu, Jiangxin Yang, Yanlong Cao, Siliang Tang, Yanpeng Cao, Matteo Maggioni, Ioannis Marras, Thomas Tanay, Gregory Slabaugh, Youliang Yan, Myungjoo Kang, Han-Soo Choi, Kyungmin Song, Shusong Xu, Xiaomu Lu, Tingniao Wang, Chunxia Lei, Bin Liu, Rajat Gupta, Vineet Kumar
This challenge is based on a newly collected validation and testing image datasets, and hence, named SIDD+.
no code implementations • ICLR 2019 • Haoyi Xiong, Wenqing Hu, Zhanxing Zhu, Xinjian Li, Yunchao Zhang, Jun Huan
Derivative-free optimization (DFO) using trust region methods is frequently used for machine learning applications, such as (hyper-)parameter optimization without the derivatives of objective functions known.