no code implementations • 16 Feb 2024 • Yiwen Li, Yunguan Fu, Iani J. M. B. Gayo, Qianye Yang, Zhe Min, Shaheer U. Saeed, Wen Yan, Yipei Wang, J. Alison Noble, Mark Emberton, Matthew J. Clarkson, Dean C. Barratt, Victor A. Prisacariu, Yipeng Hu
For training registration networks, weak supervision from segmented corresponding regions-of-interest (ROIs) have been proven effective for (a) supplementing unsupervised methods, and (b) being used independently in registration tasks in which unsupervised losses are unavailable or ineffective.
1 code implementation • 30 Aug 2023 • Yunguan Fu, Yiwen Li, Shaheer U Saeed, Matthew J Clarkson, Yipeng Hu
In this work, we focus on improving the training strategy and propose a novel recycling method.
no code implementations • 12 Mar 2023 • Qian Li, Yunguan Fu, Qianye Yang, Zhijiang Du, Hongjian Yu, Yipeng Hu
Graph neural networks (GNNs) have been proposed for medical image segmentation, by predicting anatomical structures represented by graphs of vertices and edges.
1 code implementation • 10 Mar 2023 • Yunguan Fu, Yiwen Li, Shaheer U. Saeed, Matthew J. Clarkson, Yipeng Hu
Recently, denoising diffusion probabilistic models (DDPM) have been applied to image segmentation by generating segmentation masks conditioned on images, while the applications were mainly limited to 2D networks without exploiting potential benefits from the 3D formulation.
no code implementations • 3 Dec 2022 • Shaheer U. Saeed, João Ramalhinho, Mark Pinnock, Ziyi Shen, Yunguan Fu, Nina Montaña-Brown, Ester Bonmati, Dean C. Barratt, Stephen P. Pereira, Brian Davidson, Matthew J. Clarkson, Yipeng Hu
In this work, the task predictor is a segmentation network.
2 code implementations • 4 Nov 2022 • M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng
For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e. g. geometry, physiology, physics) of medical data being processed.
1 code implementation • 12 Sep 2022 • Yiwen Li, Yunguan Fu, Iani Gayo, Qianye Yang, Zhe Min, Shaheer Saeed, Wen Yan, Yipei Wang, J. Alison Noble, Mark Emberton, Matthew J. Clarkson, Henkjan Huisman, Dean Barratt, Victor Adrian Prisacariu, Yipeng Hu
The prowess that makes few-shot learning desirable in medical image analysis is the efficient use of the support image data, which are labelled to classify or segment new classes, a task that otherwise requires substantially more training images and expert annotations.
1 code implementation • 26 Jul 2022 • Qianye Yang, David Atkinson, Yunguan Fu, Tom Syer, Wen Yan, Shonit Punwani, Matthew J. Clarkson, Dean C. Barratt, Tom Vercauteren, Yipeng Hu
In this work, we consider the task of pairwise cross-modality image registration, which may benefit from exploiting additional images available only at training time from an additional modality that is different to those being registered.
1 code implementation • 27 Mar 2022 • Shaheer U. Saeed, Yunguan Fu, Vasilis Stavrinides, Zachary M. C. Baum, Qianye Yang, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, J. Alison Noble, Dean C. Barratt, Yipeng Hu
In this paper, we consider image quality assessment (IQA) as a measure of how images are amenable with respect to a given downstream task, or task amenability.
1 code implementation • 20 Feb 2022 • Shaheer U. Saeed, Wen Yan, Yunguan Fu, Francesco Giganti, Qianye Yang, Zachary M. C. Baum, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, Mark Emberton, Dean C. Barratt, Yipeng Hu
This allows for the trained IQA controller to measure the impact an image has on the target task performance, when this task is performed using the predictor, e. g. segmentation and classification neural networks in modern clinical applications.
no code implementations • 17 Jan 2022 • Yiwen Li, Yunguan Fu, Qianye Yang, Zhe Min, Wen Yan, Henkjan Huisman, Dean Barratt, Victor Adrian Prisacariu, Yipeng Hu
The ability to adapt medical image segmentation networks for a novel class such as an unseen anatomical or pathological structure, when only a few labelled examples of this class are available from local healthcare providers, is sought-after.
1 code implementation • 22 Oct 2021 • Yiwen Li, Gratianus Wesley Putra Data, Yunguan Fu, Yipeng Hu, Victor Adrian Prisacariu
Despite the success of deep learning methods for semantic segmentation, few-shot semantic segmentation remains a challenging task due to the limited training data and the generalisation requirement for unseen classes.
1 code implementation • 31 Jul 2021 • Shaheer U. Saeed, Yunguan Fu, Vasilis Stavrinides, Zachary M. C. Baum, Qianye Yang, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, J. Alison Noble, Dean C. Barratt, Yipeng Hu
Using 6644 clinical ultrasound images from 249 prostate cancer patients, our results for image classification and segmentation tasks show that the proposed IQA method can be adapted using data with as few as respective 19. 7% and 29. 6% expert-reviewed consensus labels and still achieve comparable IQA and task performance, which would otherwise require a training dataset with 100% expert labels.
no code implementations • 15 Feb 2021 • Shaheer U. Saeed, Yunguan Fu, Zachary M. C. Baum, Qianye Yang, Mirabela Rusu, Richard E. Fan, Geoffrey A. Sonn, Dean C. Barratt, Yipeng Hu
In this paper, we consider a type of image quality assessment as a task-specific measurement, which can be used to select images that are more amenable to a given target task, such as image classification or segmentation.
no code implementations • 16 Jan 2021 • Qianye Yang, Tom Vercauteren, Yunguan Fu, Francesco Giganti, Nooshin Ghavami, Vasilis Stavrinides, Caroline Moore, Matt Clarkson, Dean Barratt, Yipeng Hu
Organ morphology is a key indicator for prostate disease diagnosis and prognosis.
1 code implementation • 4 Nov 2020 • Yunguan Fu, Nina Montaña Brown, Shaheer U. Saeed, Adrià Casamitjana, Zachary M. C. Baum, Rémi Delaunay, Qianye Yang, Alexander Grimwood, Zhe Min, Stefano B. Blumberg, Juan Eugenio Iglesias, Dean C. Barratt, Ester Bonmati, Daniel C. Alexander, Matthew J. Clarkson, Tom Vercauteren, Yipeng Hu
DeepReg (https://github. com/DeepRegNet/DeepReg) is a community-supported open-source toolkit for research and education in medical image registration using deep learning.
no code implementations • 29 Aug 2020 • Qianye Yang, Yunguan Fu, Francesco Giganti, Nooshin Ghavami, Qingchao Chen, J. Alison Noble, Tom Vercauteren, Dean Barratt, Yipeng Hu
Morphological analysis of longitudinal MR images plays a key role in monitoring disease progression for prostate cancer patients, who are placed under an active surveillance program.
no code implementations • 20 Aug 2019 • Yunguan Fu, Maria R. Robu, Bongjin Koo, Crispin Schneider, Stijn van Laarhoven, Danail Stoyanov, Brian Davidson, Matthew J. Clarkson, Yipeng Hu
Improving a semi-supervised image segmentation task has the option of adding more unlabelled images, labelling the unlabelled images or combining both, as neither image acquisition nor expert labelling can be considered trivial in most clinical applications.
2 code implementations • 4 Jul 2018 • Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl Hajjar, Torbjorn S. Dahl, Amine Kerkeni, Karim Beguir
Results from applying the R2 algorithm to instances of a two-dimensional and three-dimensional bin packing problems show that it outperforms generic Monte Carlo tree search, heuristic algorithms and integer programming solvers.