no code implementations • 19 Feb 2025 • Xianjun Yang, Shaoliang Nie, Lijuan Liu, Suchin Gururangan, Ujjwal Karn, Rui Hou, Madian Khabsa, Yuning Mao
We prove that SAEs can serve as a good alternative to diversity measure and design our method to be scalable for potential industrial large-scale pruning, and we will also release our trained SAEs for use by the broader community.
no code implementations • 24 Oct 2024 • Yiqing Xie, Wenxuan Zhou, Pradyot Prakash, Di Jin, Yuning Mao, Quintin Fettes, Arya Talebzadeh, Sinong Wang, Han Fang, Carolyn Rose, Daniel Fried, Hejia Zhang
Factuality evaluation aims to detect factual errors produced by language models (LMs) and hence guide the development of more factual models.
2 code implementations • 24 Sep 2024 • Taowen Wang, Yiyang Liu, James Chenhao Liang, Junhan Zhao, Yiming Cui, Yuning Mao, Shaoliang Nie, Jiahao Liu, Fuli Feng, Zenglin Xu, Cheng Han, Lifu Huang, Qifan Wang, Dongfang Liu
Instruction tuning has emerged as an effective strategy for achieving zero-shot generalization by finetuning pretrained models on diverse multimodal tasks.
4 code implementations • 31 Jul 2024 • Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer Van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, WenWen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, Zhiyu Ma
This paper presents a new set of foundation models, called Llama 3.
Ranked #3 on
Question Answering
on PeerQA
no code implementations • 26 Feb 2024 • Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H. Markosyan, Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, Tim Rocktäschel, Roberta Raileanu
Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem and uses open-ended search to generate prompts that are both effective and diverse.
1 code implementation • 7 Dec 2023 • Jaehyung Kim, Yuning Mao, Rui Hou, Hanchao Yu, Davis Liang, Pascale Fung, Qifan Wang, Fuli Feng, Lifu Huang, Madian Khabsa
Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.
1 code implementation • 7 Dec 2023 • Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, Madian Khabsa
We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases.
no code implementations • 13 Nov 2023 • Suyu Ge, Chunting Zhou, Rui Hou, Madian Khabsa, Yi-Chia Wang, Qifan Wang, Jiawei Han, Yuning Mao
Specifically, an adversarial LLM and a target LLM interplay with each other in an iterative manner, where the adversarial LLM aims to generate challenging prompts that elicit unsafe responses from the target LLM, while the target LLM is fine-tuned with safety aligned data on these adversarial prompts.
19 code implementations • 18 Jul 2023 • Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters.
Ranked #2 on
Question Answering
on PubChemQA
5 code implementations • NeurIPS 2023 • Chunting Zhou, PengFei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, Omer Levy
Large language models are trained in two stages: (1) unsupervised pretraining from raw text, to learn general-purpose representations, and (2) large scale instruction tuning and reinforcement learning, to better align to end tasks and user preferences.
1 code implementation • 6 May 2023 • Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, Jimmy Ba, Amjad Almahairi
In this work, we introduce Residual Prompt Tuning - a simple and efficient method that significantly improves the performance and stability of prompt tuning.
1 code implementation • 4 Feb 2023 • Yu Meng, Jitin Krishnan, Sinong Wang, Qifan Wang, Yuning Mao, Han Fang, Marjan Ghazvininejad, Jiawei Han, Luke Zettlemoyer
In this work, we offer a new perspective on the consequence of such a discrepancy: We demonstrate empirically and theoretically that MLM pretraining allocates some model dimensions exclusively for representing $\texttt{[MASK]}$ tokens, resulting in a representation deficiency for real tokens and limiting the pretrained model's expressiveness when it is adapted to downstream data without $\texttt{[MASK]}$ tokens.
2 code implementations • 29 Jan 2023 • Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, Amjad Almahairi
We introduce Progressive Prompts - a simple and efficient approach for continual learning in language models.
3 code implementations • 25 Jan 2023 • Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa
Large multilingual language models typically rely on a single vocabulary shared across 100+ languages.
2 code implementations • 13 Oct 2022 • Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, PengFei Liu, Chenguang Zhu, Heng Ji, Jiawei Han
We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions.
1 code implementation • 12 May 2022 • Yuning Mao, Ming Zhong, Jiawei Han
Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers.
Ranked #1 on
Extreme Summarization
on CiteSum
2 code implementations • 29 Jan 2022 • Ming Zhong, Yang Liu, Suyu Ge, Yuning Mao, Yizhu Jiao, Xingxing Zhang, Yichong Xu, Chenguang Zhu, Michael Zeng, Jiawei Han
In this paper, we propose the first unsupervised multi-granularity summarization framework, GranuSum.
1 code implementation • ACL 2022 • Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, Madian Khabsa
Recent parameter-efficient language model tuning (PELT) methods manage to match the performance of fine-tuning with much fewer trainable parameters and perform especially well when training data is limited.
1 code implementation • NAACL 2022 • Yuxin Xiao, Zecheng Zhang, Yuning Mao, Carl Yang, Jiawei Han
Consequently, it is more challenging to encode the key information sources--relevant contexts and entity types.
Ranked #1 on
Relation Extraction
on CDR
1 code implementation • Findings (ACL) 2022 • Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han
Typical DocRE methods blindly take the full document as input, while a subset of the sentences in the document, noted as the evidence, are often sufficient for humans to predict the relation of an entity pair.
Ranked #5 on
Relation Extraction
on DocRED
2 code implementations • EMNLP 2021 • Yuning Mao, Wenchang Ma, Deren Lei, Jiawei Han, Xiang Ren
In this paper, we present a systematic analysis that studies whether current seq2seq models, especially pre-trained language models, are good enough for preserving important input concepts and to what extent explicitly guiding generation with the concepts as lexical constraints is beneficial.
1 code implementation • 6 Jan 2021 • Jieyu Zhang, Xiangchen Song, Ying Zeng, Jiaze Chen, Jiaming Shen, Yuning Mao, Lei LI
Previous approaches focus on the taxonomy expansion, i. e. finding an appropriate hypernym concept from the taxonomy for a new query concept.
1 code implementation • 1 Jan 2021 • Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, Weizhu Chen
Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer.
2 code implementations • 24 Oct 2020 • Yuning Mao, Xiang Ren, Heng Ji, Jiawei Han
Despite significant progress, state-of-the-art abstractive summarization methods are still prone to hallucinate content inconsistent with the source document.
1 code implementation • EMNLP 2020 • Yuning Mao, Yanru Qu, Yiqing Xie, Xiang Ren, Jiawei Han
Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy.
1 code implementation • ACL 2021 • Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, Weizhu Chen
We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR.
no code implementations • 24 Jun 2020 • Xin Luna Dong, Xiang He, Andrey Kan, Xi-An Li, Yan Liang, Jun Ma, Yifan Ethan Xu, Chenwei Zhang, Tong Zhao, Gabriel Blanco Saldana, Saurabh Deshpande, Alexandre Michetti Manduca, Jay Ren, Surender Pal Singh, Fan Xiao, Haw-Shiuan Chang, Giannis Karamanolakis, Yuning Mao, Yaqing Wang, Christos Faloutsos, Andrew McCallum, Jiawei Han
Can one build a knowledge graph (KG) for all products in the world?
no code implementations • 18 Jun 2020 • Yuning Mao, Tong Zhao, Andrey Kan, Chenwei Zhang, Xin Luna Dong, Christos Faloutsos, Jiawei Han
We propose to distantly train a sequence labeling model for term extraction and employ graph neural networks (GNNs) to capture the taxonomy structure as well as the query-item-taxonomy interactions for term attachment.
1 code implementation • EMNLP 2020 • Deren Lei, Gangrong Jiang, Xiaotao Gu, Kexuan Sun, Yuning Mao, Xiang Ren
Walk-based models have shown their advantages in knowledge graph (KG) reasoning by achieving decent performance while providing interpretable decisions.
2 code implementations • 26 Jan 2020 • Xiaotao Gu, Yuning Mao, Jiawei Han, Jialu Liu, Hongkun Yu, You Wu, Cong Yu, Daniel Finnie, Jiaqi Zhai, Nicholas Zukoski
In this work, we study the problem of generating representative headlines for news stories.
1 code implementation • IJCNLP 2019 • Yuning Mao, Jingjing Tian, Jiawei Han, Xiang Ren
While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference.
Ranked #1 on
Text Classification
on RCV1
(Macro F1 metric)
1 code implementation • ACL 2020 • Yuning Mao, Liyuan Liu, Qi Zhu, Xiang Ren, Jiawei Han
In this paper, we present a facet-aware evaluation setup for better assessment of the information coverage in extracted summaries.
no code implementations • 27 Sep 2018 • Yuning Mao, Jingjing Tian, Jiawei Han, Xiang Ren
We present an end-to-end reinforcement learning approach to hierarchical text classification where documents are labeled by placing them at the right positions in a given hierarchy.
1 code implementation • ACL 2018 • Yuning Mao, Xiang Ren, Jiaming Shen, Xiaotao Gu, Jiawei Han
We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms.