Search Results for author: Yunxiang Li

Found 27 papers, 12 papers with code

Multi-Level Feature Fusion Network for Lightweight Stereo Image Super-Resolution

1 code implementation9 May 2024 Yunxiang Li, Wenbin Zou, Qiaomu Wei, Feng Huang, Jing Wu

Stereo image super-resolution utilizes the cross-view complementary information brought by the disparity effect of left and right perspective images to reconstruct higher-quality images.

Stereo Image Super-Resolution

NTIRE 2024 Challenge on Low Light Image Enhancement: Methods and Results

3 code implementations22 Apr 2024 Xiaoning Liu, Zongwei Wu, Ao Li, Florin-Alexandru Vasluianu, Yulun Zhang, Shuhang Gu, Le Zhang, Ce Zhu, Radu Timofte, Zhi Jin, Hongjun Wu, Chenxi Wang, Haitao Ling, Yuanhao Cai, Hao Bian, Yuxin Zheng, Jing Lin, Alan Yuille, Ben Shao, Jin Guo, Tianli Liu, Mohao Wu, Yixu Feng, Shuo Hou, Haotian Lin, Yu Zhu, Peng Wu, Wei Dong, Jinqiu Sun, Yanning Zhang, Qingsen Yan, Wenbin Zou, Weipeng Yang, Yunxiang Li, Qiaomu Wei, Tian Ye, Sixiang Chen, Zhao Zhang, Suiyi Zhao, Bo wang, Yan Luo, Zhichao Zuo, Mingshen Wang, Junhu Wang, Yanyan Wei, Xiaopeng Sun, Yu Gao, Jiancheng Huang, Hongming Chen, Xiang Chen, Hui Tang, Yuanbin Chen, Yuanbo Zhou, Xinwei Dai, Xintao Qiu, Wei Deng, Qinquan Gao, Tong Tong, Mingjia Li, Jin Hu, Xinyu He, Xiaojie Guo, sabarinathan, K Uma, A Sasithradevi, B Sathya Bama, S. Mohamed Mansoor Roomi, V. Srivatsav, Jinjuan Wang, Long Sun, Qiuying Chen, Jiahong Shao, Yizhi Zhang, Marcos V. Conde, Daniel Feijoo, Juan C. Benito, Alvaro García, Jaeho Lee, Seongwan Kim, Sharif S M A, Nodirkhuja Khujaev, Roman Tsoy, Ali Murtaza, Uswah Khairuddin, Ahmad 'Athif Mohd Faudzi, Sampada Malagi, Amogh Joshi, Nikhil Akalwadi, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Wenyi Lian, Wenjing Lian, Jagadeesh Kalyanshetti, Vijayalaxmi Ashok Aralikatti, Palani Yashaswini, Nitish Upasi, Dikshit Hegde, Ujwala Patil, Sujata C, Xingzhuo Yan, Wei Hao, Minghan Fu, Pooja Choksy, Anjali Sarvaiya, Kishor Upla, Kiran Raja, Hailong Yan, Yunkai Zhang, Baiang Li, Jingyi Zhang, Huan Zheng

This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results.

4k Low-Light Image Enhancement +1

Enhancing Policy Gradient with the Polyak Step-Size Adaption

no code implementations11 Apr 2024 Yunxiang Li, Rui Yuan, Chen Fan, Mark Schmidt, Samuel Horváth, Robert M. Gower, Martin Takáč

Policy gradient is a widely utilized and foundational algorithm in the field of reinforcement learning (RL).

Reinforcement Learning (RL)

Prior Frequency Guided Diffusion Model for Limited Angle (LA)-CBCT Reconstruction

no code implementations1 Apr 2024 Jiacheng Xie, Hua-Chieh Shao, Yunxiang Li, You Zhang

PFGDM-B, on the other hand, continuously applies the prior CT information condition in every reconstruction step, while with a decaying mechanism, to gradually phase out the reconstruction guidance from the prior CT scans.

SSIM

Generalized Policy Learning for Smart Grids: FL TRPO Approach

no code implementations27 Mar 2024 Yunxiang Li, Nicolas Mauricio Cuadrado, Samuel Horváth, Martin Takáč

The smart grid domain requires bolstering the capabilities of existing energy management systems; Federated Learning (FL) aligns with this goal as it demonstrates a remarkable ability to train models on heterogeneous datasets while maintaining data privacy, making it suitable for smart grid applications, which often involve disparate data distributions and interdependencies among features that hinder the suitability of linear models.

energy management Federated Learning +1

FDNet: Feature Decoupled Segmentation Network for Tooth CBCT Image

no code implementations11 Nov 2023 Xiang Feng, Chengkai Wang, Chengyu Wu, Yunxiang Li, Yongbo He, Shuai Wang, Yaiqi Wang

Precise Tooth Cone Beam Computed Tomography (CBCT) image segmentation is crucial for orthodontic treatment planning.

Image Segmentation Segmentation +1

nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance

1 code implementation29 Sep 2023 Yunxiang Li, Bowen Jing, Zihan Li, Jing Wang, You Zhang

To combine the strengths of foundational and domain-specific models, we propose nnSAM, integrating SAM's robust feature extraction with nnUNet's automatic configuration to enhance segmentation accuracy on small datasets.

Few-Shot Learning Heart Segmentation +4

Enhancing Point Annotations with Superpixel and Confidence Learning Guided for Improving Semi-Supervised OCT Fluid Segmentation

no code implementations5 Jun 2023 Tengjin Weng, Yang shen, Kai Jin, Zhiming Cheng, Yunxiang Li, Gewen Zhang, Shuai Wang, Yaqi Wang

Specifically, we use points to annotate fluid regions in unlabeled OCT images and the Superpixel-Guided Pseudo-Label Generation (SGPLG) module generates pseudo-labels and pixel-level label trust maps from the point annotations.

Denoising Pseudo Label +1

SAMScore: A Semantic Structural Similarity Metric for Image Translation Evaluation

1 code implementation24 May 2023 Yunxiang Li, Meixu Chen, Wenxuan Yang, Kai Wang, Jun Ma, Alan C. Bovik, You Zhang

Image translation has wide applications, such as style transfer and modality conversion, usually aiming to generate images having both high degrees of realism and faithfulness.

Semantic Similarity Semantic Textual Similarity +2

Zero-shot Medical Image Translation via Frequency-Guided Diffusion Models

1 code implementation5 Apr 2023 Yunxiang Li, Hua-Chieh Shao, Xiao Liang, Liyuan Chen, RuiQi Li, Steve Jiang, Jing Wang, You Zhang

However, for medical image translation, the existing diffusion models are deficient in accurately retaining structural information since the structure details of source domain images are lost during the forward diffusion process and cannot be fully recovered through learned reverse diffusion, while the integrity of anatomical structures is extremely important in medical images.

Anatomy SSIM +2

ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge

1 code implementation24 Mar 2023 Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, You Zhang

The primary aim of this research was to address the limitations observed in the medical knowledge of prevalent large language models (LLMs) such as ChatGPT, by creating a specialized language model with enhanced accuracy in medical advice.

Information Retrieval Language Modelling +3

Recurrence-free Survival Prediction under the Guidance of Automatic Gross Tumor Volume Segmentation for Head and Neck Cancers

1 code implementation22 Sep 2022 Kai Wang, Yunxiang Li, Michael Dohopolski, Tao Peng, Weiguo Lu, You Zhang, Jing Wang

For Head and Neck Cancers (HNC) patient management, automatic gross tumor volume (GTV) segmentation and accurate pre-treatment cancer recurrence prediction are of great importance to assist physicians in designing personalized management plans, which have the potential to improve the treatment outcome and quality of life for HNC patients.

Management Segmentation +2

MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data

1 code implementation ACL 2022 Yilun Zhao, Yunxiang Li, Chenying Li, Rui Zhang

Numerical reasoning over hybrid data containing both textual and tabular content (e. g., financial reports) has recently attracted much attention in the NLP community.

Question Answering

Plug-and-play Shape Refinement Framework for Multi-site and Lifespan Brain Skull Stripping

no code implementations8 Mar 2022 Yunxiang Li, Ruilong Dan, Shuai Wang, Yifan Cao, Xiangde Luo, Chenghao Tan, Gangyong Jia, Huiyu Zhou, You Zhang, Yaqi Wang, Li Wang

For instance, the model trained on a dataset with specific imaging parameters cannot be well applied to other datasets with different imaging parameters.

Skull Stripping Source-Free Domain Adaptation

Dispensed Transformer Network for Unsupervised Domain Adaptation

no code implementations28 Oct 2021 Yunxiang Li, Jingxiong Li, Ruilong Dan, Shuai Wang, Kai Jin, Guodong Zeng, Jun Wang, Xiangji Pan, Qianni Zhang, Huiyu Zhou, Qun Jin, Li Wang, Yaqi Wang

To mitigate this problem, a novel unsupervised domain adaptation (UDA) method named dispensed Transformer network (DTNet) is introduced in this paper.

Medical Image Analysis Unsupervised Domain Adaptation

GT U-Net: A U-Net Like Group Transformer Network for Tooth Root Segmentation

1 code implementation30 Sep 2021 Yunxiang Li, Shuai Wang, Jun Wang, Guodong Zeng, Wenjun Liu, Qianni Zhang, Qun Jin, Yaqi Wang

In this paper, we propose a novel end-to-end U-Net like Group Transformer Network (GT U-Net) for the tooth root segmentation.

Anatomy Segmentation

AGMB-Transformer: Anatomy-Guided Multi-Branch Transformer Network for Automated Evaluation of Root Canal Therapy

1 code implementation2 May 2021 Yunxiang Li, Guodong Zeng, Yifan Zhang, Jun Wang, Qianni Zhang, Qun Jin, Lingling Sun, Qisi Lian, Neng Xia, Ruizi Peng, Kai Tang, Yaqi Wang, Shuai Wang

Accurate evaluation of the treatment result on X-ray images is a significant and challenging step in root canal therapy since the incorrect interpretation of the therapy results will hamper timely follow-up which is crucial to the patients' treatment outcome.

Anatomy General Classification

A cascade network for Detecting COVID-19 using chest x-rays

no code implementations1 May 2020 Dailin Lv, Wuteng Qi, Yunxiang Li, Lingling Sun, Yaqi Wang

Then we used SEME-DenseNet169 for fine-grained classification of viral pneumonia and determined if it is caused by COVID-19.

Efficient and Robust Reinforcement Learning with Uncertainty-based Value Expansion

no code implementations10 Dec 2019 Bo Zhou, Hongsheng Zeng, Fan Wang, Yunxiang Li, Hao Tian

By integrating dynamics models into model-free reinforcement learning (RL) methods, model-based value expansion (MVE) algorithms have shown a significant advantage in sample efficiency as well as value estimation.

reinforcement-learning Reinforcement Learning +1

Hyperspectral City V1.0 Dataset and Benchmark

no code implementations24 Jul 2019 Shaodi You, Erqi Huang, Shuaizhe Liang, Yongrong Zheng, Yunxiang Li, Fan Wang, Sen Lin, Qiu Shen, Xun Cao, Diming Zhang, Yuanjiang Li, Yu Li, Ying Fu, Boxin Shi, Feng Lu, Yinqiang Zheng, Robby T. Tan

This document introduces the background and the usage of the Hyperspectral City Dataset and the benchmark.

Cannot find the paper you are looking for? You can Submit a new open access paper.