no code implementations • 19 Oct 2024 • Gesa Mittmann, Sara Laiouar-Pedari, Hendrik A. Mehrtens, Sarah Haggenmüller, Tabea-Clara Bucher, Tirtha Chanda, Nadine T. Gaisa, Mathias Wagner, Gilbert Georg Klamminger, Tilman T. Rau, Christina Neppl, Eva Maria Compérat, Andreas Gocht, Monika Hämmerle, Niels J. Rupp, Jula Westhoff, Irene Krücken, Maximillian Seidl, Christian M. Schürch, Marcus Bauer, Wiebke Solass, Yu Chun Tam, Florian Weber, Rainer Grobholz, Jaroslaw Augustyniak, Thomas Kalinski, Christian Hörner, Kirsten D. Mertz, Constanze Döring, Andreas Erbersdobler, Gabriele Deubler, Felix Bremmer, Ulrich Sommer, Michael Brodhun, Jon Griffin, Maria Sarah L. Lenon, Kiril Trpkov, Liang Cheng, Fei Chen, Angelique Levi, Guoping Cai, Tri Q. Nguyen, Ali Amin, Alessia Cimadamore, Ahmed Shabaik, Varsha Manucha, Nazeel Ahmad, Nidia Messias, Francesca Sanguedolce, Diana Taheri, Ezra Baraban, Liwei Jia, Rajal B. Shah, Farshid Siadat, Nicole Swarbrick, Kyung Park, Oudai Hassan, Siamak Sakhaie, Michelle R. Downes, Hiroshi Miyamoto, Sean R. Williamson, Tim Holland-Letz, Carolin V. Schneider, Jakob Nikolas Kather, Yuri Tolkach, Titus J. Brinker
The aggressiveness of prostate cancer, the most common cancer in men worldwide, is primarily assessed based on histopathological data using the Gleason scoring system.
no code implementations • 25 Oct 2023 • Christian Harder, Moritz Fuchs, Yuri Tolkach, Anirban Mukhopadhyay
We thoroughly evaluate the impact of the employed generative models on state-of-the-art neural networks in terms of accuracy, convergence speed and ensembling.
no code implementations • 23 Aug 2023 • Okyaz Eminaga, Mahmoud Abbas, Christian Kunder, Yuri Tolkach, Ryan Han, James D. Brooks, Rosalie Nolley, Axel Semjonow, Martin Boegemann, Robert West, Jin Long, Richard Fan, Olaf Bettendorf
Adjusting the decision threshold for the secondary Gleason pattern from 5% to 10% improved the concordance level between pathologists and vPatho for tumor grading on prostatectomy specimens (kappa from 0. 44 to 0. 64).
1 code implementation • 29 Sep 2022 • Nicolas Wagner, Moritz Fuchs, Yuri Tolkach, Anirban Mukhopadhyay
As a solution, we propose BottleGAN, a generative model that can computationally align the staining styles of many laboratories and can be trained in a privacy-preserving manner to foster federated learning in computational pathology.
no code implementations • 21 Oct 2019 • Okyaz Eminaga, Mahmood Abbas, Yuri Tolkach, Rosalie Nolley, Christian Kunder, Axel Semjonow, Martin Boegemann
Histopathology is a reflection of the molecular changes and provides prognostic phenotypes representing the disease progression.
no code implementations • 11 Oct 2019 • Okyaz Eminaga, Yuri Tolkach, Christian Kunder, Mahmood Abbas, Ryan Han, Rosalie Nolley, Axel Semjonow, Martin Boegemann, Sebastian Huss, Andreas Loening, Robert West, Geoffrey Sonn, Richard Fan, Olaf Bettendorf, James Brook, Daniel Rubin
For case usage, these models were applied for the annotation tasks in clinician-oriented pathology reports for prostatectomy specimens.