no code implementations • 31 Dec 2024 • Jiawei Yang, Jiahui Huang, Yuxiao Chen, Yan Wang, Boyi Li, Yurong You, Apoorva Sharma, Maximilian Igl, Peter Karkus, Danfei Xu, Boris Ivanovic, Yue Wang, Marco Pavone
We present STORM, a spatio-temporal reconstruction model designed for reconstructing dynamic outdoor scenes from sparse observations.
no code implementations • 31 Dec 2024 • Jiageng Mao, Boyi Li, Boris Ivanovic, Yuxiao Chen, Yan Wang, Yurong You, Chaowei Xiao, Danfei Xu, Marco Pavone, Yue Wang
In this paper, we present DreamDrive, a 4D spatial-temporal scene generation approach that combines the merits of generation and reconstruction, to synthesize generalizable 4D driving scenes and dynamic driving videos with 3D consistency.
1 code implementation • 6 Dec 2024 • Xiangyu Han, Zhen Jia, Boyi Li, Yan Wang, Boris Ivanovic, Yurong You, Lingjie Liu, Yue Wang, Marco Pavone, Chen Feng, Yiming Li
Photorealistic simulators are essential for the training and evaluation of vision-centric autonomous vehicles (AVs).
1 code implementation • 25 May 2024 • Xiangyu Chen, Zhenzhen Liu, Katie Z Luo, Siddhartha Datta, Adhitya Polavaram, Yan Wang, Yurong You, Boyi Li, Marco Pavone, Wei-Lun Chao, Mark Campbell, Bharath Hariharan, Kilian Q. Weinberger
Ensuring robust 3D object detection and localization is crucial for many applications in robotics and autonomous driving.
no code implementations • 6 May 2024 • Jang Hyun Cho, Boris Ivanovic, Yulong Cao, Edward Schmerling, Yue Wang, Xinshuo Weng, Boyi Li, Yurong You, Philipp Krähenbühl, Yan Wang, Marco Pavone
Our experiments on outdoor benchmarks demonstrate that Cube-LLM significantly outperforms existing baselines by 21. 3 points of AP-BEV on the Talk2Car dataset for 3D grounded reasoning and 17. 7 points on the DriveLM dataset for complex reasoning about driving scenarios, respectively.
1 code implementation • 8 Apr 2024 • Yurong You, Cheng Perng Phoo, Carlos Andres Diaz-Ruiz, Katie Z Luo, Wei-Lun Chao, Mark Campbell, Bharath Hariharan, Kilian Q Weinberger
Accurate 3D object detection is crucial to autonomous driving.
1 code implementation • 23 Oct 2023 • Tai-Yu Pan, Chenyang Ma, Tianle Chen, Cheng Perng Phoo, Katie Z Luo, Yurong You, Mark Campbell, Kilian Q. Weinberger, Bharath Hariharan, Wei-Lun Chao
Accurate 3D object detection and understanding for self-driving cars heavily relies on LiDAR point clouds, necessitating large amounts of labeled data to train.
1 code implementation • 21 Sep 2023 • Travis Zhang, Katie Luo, Cheng Perng Phoo, Yurong You, Wei-Lun Chao, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
Additionally, we leverage the statistics for a novel self-training process to stabilize the training.
1 code implementation • 27 Mar 2023 • Yurong You, Cheng Perng Phoo, Katie Z Luo, Travis Zhang, Wei-Lun Chao, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
For a self-driving car to operate reliably, its perceptual system must generalize to the end-user's environment -- ideally without additional annotation efforts.
no code implementations • CVPR 2022 • Carlos A. Diaz-Ruiz, Youya Xia, Yurong You, Jose Nino, Junan Chen, Josephine Monica, Xiangyu Chen, Katie Luo, Yan Wang, Marc Emond, Wei-Lun Chao, Bharath Hariharan, Kilian Q. Weinberger, Mark Campbell
Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions.
no code implementations • ICLR 2022 • Yingwei Li, Tiffany Chen, Maya Kabkab, Ruichi Yu, Longlong Jing, Yurong You, Hang Zhao
An edge in the graph encodes the relative distance information between a pair of target and reference objects.
no code implementations • 8 Jun 2022 • Longlong Jing, Ruichi Yu, Henrik Kretzschmar, Kang Li, Charles R. Qi, Hang Zhao, Alper Ayvaci, Xu Chen, Dillon Cower, Yingwei Li, Yurong You, Han Deng, CongCong Li, Dragomir Anguelov
Monocular image-based 3D perception has become an active research area in recent years owing to its applications in autonomous driving.
2 code implementations • CVPR 2022 • Yurong You, Katie Z Luo, Cheng Perng Phoo, Wei-Lun Chao, Wen Sun, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
Current 3D object detectors for autonomous driving are almost entirely trained on human-annotated data.
1 code implementation • ICLR 2022 • Yurong You, Katie Z Luo, Xiangyu Chen, Junan Chen, Wei-Lun Chao, Wen Sun, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
Self-driving cars must detect vehicles, pedestrians, and other traffic participants accurately to operate safely.
no code implementations • 26 Mar 2021 • Yurong You, Carlos Andres Diaz-Ruiz, Yan Wang, Wei-Lun Chao, Bharath Hariharan, Mark Campbell, Kilian Q Weinberger
Self-driving cars must detect other vehicles and pedestrians in 3D to plan safe routes and avoid collisions.
1 code implementation • CVPR 2020 • Yan Wang, Xiangyu Chen, Yurong You, Li Erran, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao
In the domain of autonomous driving, deep learning has substantially improved the 3D object detection accuracy for LiDAR and stereo camera data alike.
1 code implementation • CVPR 2020 • Rui Qian, Divyansh Garg, Yan Wang, Yurong You, Serge Belongie, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao
Reliable and accurate 3D object detection is a necessity for safe autonomous driving.
1 code implementation • ICLR 2020 • Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
In this paper we provide substantial advances to the pseudo-LiDAR framework through improvements in stereo depth estimation.
3D Object Detection From Stereo Images
Autonomous Driving
+2
4 code implementations • ICLR 2019 • Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, Kilian Q. Weinberger
We propose an intriguingly simple method for the construction of adversarial images in the black-box setting.
1 code implementation • CVPR 2018 • Yan Wang, Lequn Wang, Yurong You, Xu Zou, Vincent Chen, Serena Li, Gao Huang, Bharath Hariharan, Kilian Q. Weinberger
Not all people are equally easy to identify: color statistics might be enough for some cases while others might require careful reasoning about high- and low-level details.
Ranked #12 on
Person Re-Identification
on CUHK03 detected
6 code implementations • 13 Apr 2017 • Xinlei Pan, Yurong You, Ziyan Wang, Cewu Lu
To our knowledge, this is the first successful case of driving policy trained by reinforcement learning that can adapt to real world driving data.