no code implementations • 14 Mar 2025 • Ahmed Nassar, Andres Marafioti, Matteo Omenetti, Maksym Lysak, Nikolaos Livathinos, Christoph Auer, Lucas Morin, Rafael Teixeira de Lima, Yusik Kim, A. Said Gurbuz, Michele Dolfi, Miquel Farré, Peter W. J. Staar
We introduce SmolDocling, an ultra-compact vision-language model targeting end-to-end document conversion.
no code implementations • 27 Jan 2025 • Nikolaos Livathinos, Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele Dolfi, Panos Vagenas, Cesar Berrospi Ramis, Matteo Omenetti, Kasper Dinkla, Yusik Kim, Shubham Gupta, Rafael Teixeira de Lima, Valery Weber, Lucas Morin, Ingmar Meijer, Viktor Kuropiatnyk, Peter W. J. Staar
We introduce Docling, an easy-to-use, self-contained, MIT-licensed, open-source toolkit for document conversion, that can parse several types of popular document formats into a unified, richly structured representation.
3 code implementations • 19 Aug 2024 • Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele Dolfi, Nikolaos Livathinos, Panos Vagenas, Cesar Berrospi Ramis, Matteo Omenetti, Fabian Lindlbauer, Kasper Dinkla, Lokesh Mishra, Yusik Kim, Shubham Gupta, Rafael Teixeira de Lima, Valery Weber, Lucas Morin, Ingmar Meijer, Viktor Kuropiatnyk, Peter W. J. Staar
This technical report introduces Docling, an easy to use, self-contained, MIT-licensed open-source package for PDF document conversion.
1 code implementation • 27 Jun 2024 • Lokesh Mishra, Sohayl Dhibi, Yusik Kim, Cesar Berrospi Ramis, Shubham Gupta, Michele Dolfi, Peter Staar
We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports.
Ranked #1 on
Information Extraction
on SemTabNet
no code implementations • 3 Nov 2022 • Yusik Kim
Rule-based classification models described in the language of logic directly predict boolean values, rather than modeling a probability and translating it into a prediction as done in statistical models.
no code implementations • 17 Jan 2022 • Remy Kusters, Yusik Kim, Marine Collery, Christian de Sainte Marie, Shubham Gupta
On benchmark tasks, we show that these learned literals are simple enough to retain interpretability, yet improve prediction accuracy and provide sets of rules that are more concise compared to state-of-the-art rule induction algorithms.