no code implementations • ACL (WAT) 2021 • Toshiaki Nakazawa, Hideki Nakayama, Chenchen Ding, Raj Dabre, Shohei Higashiyama, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Shantipriya Parida, Ondřej Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke Oda, Sadao Kurohashi
This paper presents the results of the shared tasks from the 8th workshop on Asian translation (WAT2021).
no code implementations • WAT 2022 • Toshiaki Nakazawa, Hideya Mino, Isao Goto, Raj Dabre, Shohei Higashiyama, Shantipriya Parida, Anoop Kunchukuttan, Makoto Morishita, Ondřej Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke Oda, Sadao Kurohashi
This paper presents the results of the shared tasks from the 9th workshop on Asian translation (WAT2022).
no code implementations • 4 Jul 2024 • LLM-jp, :, Akiko Aizawa, Eiji Aramaki, Bowen Chen, Fei Cheng, Hiroyuki Deguchi, Rintaro Enomoto, Kazuki Fujii, Kensuke Fukumoto, Takuya Fukushima, Namgi Han, Yuto Harada, Chikara Hashimoto, Tatsuya Hiraoka, Shohei Hisada, Sosuke Hosokawa, Lu Jie, Keisuke Kamata, Teruhito Kanazawa, Hiroki Kanezashi, Hiroshi Kataoka, Satoru Katsumata, Daisuke Kawahara, Seiya Kawano, Atsushi Keyaki, Keisuke Kiryu, Hirokazu Kiyomaru, Takashi Kodama, Takahiro Kubo, Yohei Kuga, Ryoma Kumon, Shuhei Kurita, Sadao Kurohashi, Conglong Li, Taiki Maekawa, Hiroshi Matsuda, Yusuke Miyao, Kentaro Mizuki, Sakae Mizuki, Yugo Murawaki, Akim Mousterou, Ryo Nakamura, Taishi Nakamura, Kouta Nakayama, Tomoka Nakazato, Takuro Niitsuma, Jiro Nishitoba, Yusuke Oda, Hayato Ogawa, Takumi Okamoto, Naoaki Okazaki, Yohei Oseki, Shintaro Ozaki, Koki Ryu, Rafal Rzepka, Keisuke Sakaguchi, Shota Sasaki, Satoshi Sekine, Kohei Suda, Saku Sugawara, Issa Sugiura, Hiroaki Sugiyama, Hisami Suzuki, Jun Suzuki, Toyotaro Suzumura, Kensuke Tachibana, Yu Takagi, Kyosuke Takami, Koichi Takeda, Masashi Takeshita, Masahiro Tanaka, Kenjiro Taura, Arseny Tolmachev, Nobuhiro Ueda, Zhen Wan, Shuntaro Yada, Sakiko Yahata, Yuya Yamamoto, Yusuke Yamauchi, Hitomi Yanaka, Rio Yokota, Koichiro Yoshino
This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs).
1 code implementation • 24 Jun 2024 • Koichi Akabe, Shunsuke Kanda, Yusuke Oda, Shinsuke Mori
This paper proposes an approach to improve the runtime efficiency of Japanese tokenization based on the pointwise linear classification (PLC) framework, which formulates the whole tokenization process as a sequence of linear classification problems.
no code implementations • 20 Nov 2023 • Atsushi Shirafuji, Yusuke Oda, Jun Suzuki, Makoto Morishita, Yutaka Watanobe
A less complex and more straightforward program is a crucial factor that enhances its maintainability and makes writing secure and bug-free programs easier.
no code implementations • 26 Jun 2023 • Atsushi Shirafuji, Yutaka Watanobe, Takumi Ito, Makoto Morishita, Yuki Nakamura, Yusuke Oda, Jun Suzuki
Our experimental results show that CodeGen and Codex are sensitive to the superficial modifications of problem descriptions and significantly impact code generation performance.
no code implementations • ACL 2022 • Pride Kavumba, Ryo Takahashi, Yusuke Oda
However, models with a task-specific head require a lot of training data, making them susceptible to learning and exploiting dataset-specific superficial cues that do not generalize to other datasets.
no code implementations • WS 2020 • Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioannis Konstas, Andrew Finch, Graham Neubig, Xi-An Li, Alex Birch, ra
We describe the finding of the Fourth Workshop on Neural Generation and Translation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2020).
no code implementations • LREC 2020 • Nobushige Doi, Yusuke Oda, Toshiaki Nakazawa
In this paper, we describe the details of the Timely Disclosure Documents Corpus (TDDC).
no code implementations • WS 2019 • Toshiaki Nakazawa, Nobushige Doi, Shohei Higashiyama, Chenchen Ding, Raj Dabre, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Yusuke Oda, Shantipriya Parida, Ond{\v{r}}ej Bojar, Sadao Kurohashi
This paper presents the results of the shared tasks from the 6th workshop on Asian translation (WAT2019) including Ja↔En, Ja↔Zh scientific paper translation subtasks, Ja↔En, Ja↔Ko, Ja↔En patent translation subtasks, Hi↔En, My↔En, Km↔En, Ta↔En mixed domain subtasks and Ru↔Ja news commentary translation task.
no code implementations • WS 2019 • Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Konstas, Andrew Finch, Minh-Thang Luong, Graham Neubig, Katsuhito Sudoh
This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019).
no code implementations • WS 2018 • Alexandra Birch, Andrew Finch, Minh-Thang Luong, Graham Neubig, Yusuke Oda
This document describes the findings of the Second Workshop on Neural Machine Translation and Generation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2018).
no code implementations • WS 2017 • Yusuke Oda, Katsuhito Sudoh, Satoshi Nakamura, Masao Utiyama, Eiichiro Sumita
This paper describes the details about the NAIST-NICT machine translation system for WAT2017 English-Japanese Scientific Paper Translation Task.
no code implementations • WS 2017 • Toshiaki Nakazawa, Shohei Higashiyama, Chenchen Ding, Hideya Mino, Isao Goto, Hideto Kazawa, Yusuke Oda, Graham Neubig, Sadao Kurohashi
For the WAT2017, 12 institutions participated in the shared tasks.
no code implementations • WS 2017 • Makoto Morishita, Yusuke Oda, Graham Neubig, Koichiro Yoshino, Katsuhito Sudoh, Satoshi Nakamura
Training of neural machine translation (NMT) models usually uses mini-batches for efficiency purposes.
no code implementations • ACL 2017 • Yusuke Oda, Philip Arthur, Graham Neubig, Koichiro Yoshino, Satoshi Nakamura
In this paper, we propose a new method for calculating the output layer in neural machine translation systems.
4 code implementations • 15 Jan 2017 • Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin
In the static declaration strategy that is used in toolkits like Theano, CNTK, and TensorFlow, the user first defines a computation graph (a symbolic representation of the computation), and then examples are fed into an engine that executes this computation and computes its derivatives.
no code implementations • COLING 2016 • Yusuke Oda, Taku Kudo, Tetsuji Nakagawa, Taro Watanabe
In this paper, we propose a new decoding method for phrase-based statistical machine translation which directly uses multiple preordering candidates as a graph structure.