Search Results for author: Yuwei Fang

Found 22 papers, 13 papers with code

i-Code Studio: A Configurable and Composable Framework for Integrative AI

no code implementations23 May 2023 Yuwei Fang, Mahmoud Khademi, Chenguang Zhu, ZiYi Yang, Reid Pryzant, Yichong Xu, Yao Qian, Takuya Yoshioka, Lu Yuan, Michael Zeng, Xuedong Huang

Artificial General Intelligence (AGI) requires comprehensive understanding and generation capabilities for a variety of tasks spanning different modalities and functionalities.

Question Answering Retrieval +4

i-Code V2: An Autoregressive Generation Framework over Vision, Language, and Speech Data

no code implementations21 May 2023 ZiYi Yang, Mahmoud Khademi, Yichong Xu, Reid Pryzant, Yuwei Fang, Chenguang Zhu, Dongdong Chen, Yao Qian, Mei Gao, Yi-Ling Chen, Robert Gmyr, Naoyuki Kanda, Noel Codella, Bin Xiao, Yu Shi, Lu Yuan, Takuya Yoshioka, Michael Zeng, Xuedong Huang

The convergence of text, visual, and audio data is a key step towards human-like artificial intelligence, however the current Vision-Language-Speech landscape is dominated by encoder-only models which lack generative abilities.

Unifying Vision, Text, and Layout for Universal Document Processing

2 code implementations CVPR 2023 Zineng Tang, ZiYi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal

UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation.

Document AI Image Reconstruction

MACSum: Controllable Summarization with Mixed Attributes

1 code implementation9 Nov 2022 Yusen Zhang, Yang Liu, ZiYi Yang, Yuwei Fang, Yulong Chen, Dragomir Radev, Chenguang Zhu, Michael Zeng, Rui Zhang

We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning.

Specificity

Retrieval Augmentation for Commonsense Reasoning: A Unified Approach

1 code implementation23 Oct 2022 Wenhao Yu, Chenguang Zhu, Zhihan Zhang, Shuohang Wang, Zhuosheng Zhang, Yuwei Fang, Meng Jiang

However, applying such methods to commonsense reasoning tasks faces two unique challenges, i. e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever.

Retrieval

Task Compass: Scaling Multi-task Pre-training with Task Prefix

1 code implementation12 Oct 2022 Zhuosheng Zhang, Shuohang Wang, Yichong Xu, Yuwei Fang, Wenhao Yu, Yang Liu, Hai Zhao, Chenguang Zhu, Michael Zeng

Leveraging task-aware annotated data as supervised signals to assist with self-supervised learning on large-scale unlabeled data has become a new trend in pre-training language models.

Data Augmentation Multi-Task Learning +1

Dict-BERT: Enhancing Language Model Pre-training with Dictionary

1 code implementation Findings (ACL) 2022 Wenhao Yu, Chenguang Zhu, Yuwei Fang, Donghan Yu, Shuohang Wang, Yichong Xu, Michael Zeng, Meng Jiang

In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary.

Language Modelling Masked Language Modeling

KG-FiD: Infusing Knowledge Graph in Fusion-in-Decoder for Open-Domain Question Answering

no code implementations ACL 2022 Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yiming Yang, Michael Zeng

The recent proposed Fusion-in-Decoder (FiD), which is built on top of the pretrained generative model T5, achieves the state-of-the-art performance in the reading module.

Answer Generation Open-Domain Question Answering +3

Does Knowledge Help General NLU? An Empirical Study

no code implementations1 Sep 2021 Ruochen Xu, Yuwei Fang, Chenguang Zhu, Michael Zeng

It is often observed in knowledge-centric tasks (e. g., common sense question and answering, relation classification) that the integration of external knowledge such as entity representation into language models can help provide useful information to boost the performance.

Common Sense Reasoning Language Modelling +2

RetGen: A Joint framework for Retrieval and Grounded Text Generation Modeling

1 code implementation14 May 2021 Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris Brockett, Michel Galley, Jianfeng Gao, Bill Dolan

We propose a framework that alleviates this data constraint by jointly training a grounded generator and document retriever on the language model signal.

Dialogue Generation Language Modelling +1

Cross-Thought for Sentence Encoder Pre-training

1 code implementation EMNLP 2020 Shuohang Wang, Yuwei Fang, Siqi Sun, Zhe Gan, Yu Cheng, Jing Jiang, Jingjing Liu

In this paper, we propose Cross-Thought, a novel approach to pre-training sequence encoder, which is instrumental in building reusable sequence embeddings for large-scale NLP tasks such as question answering.

Information Retrieval Language Modelling +4

Contrastive Distillation on Intermediate Representations for Language Model Compression

1 code implementation EMNLP 2020 Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, Jingjing Liu

Existing language model compression methods mostly use a simple L2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one.

Knowledge Distillation Language Modelling +1

Accelerating Real-Time Question Answering via Question Generation

no code implementations10 Sep 2020 Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun, Jingjing Liu, Chenguang Zhu

Although deep neural networks have achieved tremendous success for question answering (QA), they are still suffering from heavy computational and energy cost for real product deployment.

Data Augmentation Multi-Task Learning +3

FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding

1 code implementation10 Sep 2020 Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun, Jingjing Liu

During inference, the model makes predictions based on the text input in the target language and its translation in the source language.

NER POS +4

Stochastic Answer Networks for SQuAD 2.0

5 code implementations24 Sep 2018 Xiaodong Liu, Wei Li, Yuwei Fang, Aerin Kim, Kevin Duh, Jianfeng Gao

This paper presents an extension of the Stochastic Answer Network (SAN), one of the state-of-the-art machine reading comprehension models, to be able to judge whether a question is unanswerable or not.

Machine Reading Comprehension Question Answering

Cannot find the paper you are looking for? You can Submit a new open access paper.