no code implementations • 12 Jun 2024 • Yuxuan Xue, Xianghui Xie, Riccardo Marin, Gerard Pons-Moll
Experiments show that our proposed framework outperforms state-of-the-art methods and enables the creation of realistic avatars from a single RGB image, achieving high-fidelity in both geometry and appearance.
1 code implementation • 10 Nov 2023 • Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, Bernhard Schölkopf
We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT).
no code implementations • ICCV 2023 • Yuxuan Xue, Bharat Lal Bhatnagar, Riccardo Marin, Nikolaos Sarafianos, Yuanlu Xu, Gerard Pons-Moll, Tony Tung
Compared to existing approaches, our method eliminates the expensive per-frame surface extraction while maintaining mesh coherency, and is capable of reconstructing meshes with arbitrary resolution without retraining.
1 code implementation • NeurIPS 2023 • Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, Bernhard Schölkopf
To tackle this challenge, we introduce a principled finetuning method -- Orthogonal Finetuning (OFT), for adapting text-to-image diffusion models to downstream tasks.
no code implementations • 12 Oct 2022 • Yuxuan Xue, Haolong Li, Stefan Leutenegger, Jörg Stückler
Visual reconstruction of fast non-rigid object deformations over time is a challenge for conventional frame-based cameras.
no code implementations • 6 Sep 2021 • Hao Xing, Yuxuan Xue, Mingchuan Zhou, Darius Burschka
Our approach achieves the bestperformance on precision and accuracy of human fall event detection, compared with other existing dictionary learning methods.