Search Results for author: Zachary Ulissi

Found 7 papers, 3 papers with code

The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis

1 code implementation17 Jun 2022 Richard Tran, Janice Lan, Muhammed Shuaibi, Siddharth Goyal, Brandon M. Wood, Abhishek Das, Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, Anuroop Sriram, Zachary Ulissi, C. Lawrence Zitnick

The dataset and baseline models are open sourced, and a public leaderboard will follow to encourage continued community developments on the total energy tasks and data.

Total Energy

FINETUNA: Fine-tuning Accelerated Molecular Simulations

no code implementations2 May 2022 Joseph Musielewicz, Xiaoxiao Wang, Tian Tian, Zachary Ulissi

Finally, we demonstrate a technique for leveraging the interactive functionality built in to VASP to efficiently compute single point calculations within our online active learning framework without the significant startup costs.

Active Learning Transfer Learning

How Do Graph Networks Generalize to Large and Diverse Molecular Systems?

no code implementations6 Apr 2022 Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ulissi, C. Lawrence Zitnick, Abhishek Das

Based on this analysis, we identify a smaller dataset that correlates well with the full OC20 dataset, and propose the GemNet-OC model, which outperforms the previous state-of-the-art on OC20 by 16%, while reducing training time by a factor of 10.

Initial Structure to Relaxed Energy (IS2RE)

The Open Catalyst 2020 (OC20) Dataset and Community Challenges

2 code implementations20 Oct 2020 Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, Zachary Ulissi

Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production.

An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage

no code implementations14 Oct 2020 C. Lawrence Zitnick, Lowik Chanussot, Abhishek Das, Siddharth Goyal, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Thibaut Lavril, Aini Palizhati, Morgane Riviere, Muhammed Shuaibi, Anuroop Sriram, Kevin Tran, Brandon Wood, Junwoong Yoon, Devi Parikh, Zachary Ulissi

As we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand.

Cannot find the paper you are looking for? You can Submit a new open access paper.