no code implementations • SignLang (LREC) 2022 • Pavel Jedlička, Zdeněk Krňoul, Milos Zelezny, Ludek Muller
The new 3D motion capture data corpus expands the portfolio of existing language resources by a corpus of 18 hours of Czech sign language.
1 code implementation • Sensors 2023 • Jakub Kanis, Ivan Gruber, Zdeněk Krňoul, Matyáš Boháček, Jakub Straka, Marek Hrúz
This work presents a novel transformer-based method for hand pose estimation—DePOTR.
Ranked #4 on Hand Pose Estimation on ICVL Hands
no code implementations • Sensors 2022 • Marek Hrúz, Ivan Gruber, Jakub Kanis, Matyáš Boháček, Miroslav Hlaváč, Zdeněk Krňoul
In this paper, we dive into sign language recognition, focusing on the recognition of isolated signs.
Ranked #4 on Sign Language Recognition on AUTSL
no code implementations • ECCV 2020 • Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie, Mingxiu Chen, Boshen Zhang, Fu Xiong, Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei Ren, Weiting Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee, Angela Yao, Weiguo Zhou, Sijia Mei, Yun-hui Liu, Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Philippe Weinzaepfel, Romain Brégier, Grégory Rogez, Vincent Lepetit, Tae-Kyun Kim
To address these issues, we designed a public challenge (HANDS'19) to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set.