no code implementations • 5 Jun 2024 • Zhong Meng, Zelin Wu, Rohit Prabhavalkar, Cal Peyser, Weiran Wang, Nanxin Chen, Tara N. Sainath, Bhuvana Ramabhadran
Neural contextual biasing effectively improves automatic speech recognition (ASR) for crucial phrases within a speaker's context, particularly those that are infrequent in the training data.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 15 Apr 2024 • Zelin Wu, Gan Song, Christopher Li, Pat Rondon, Zhong Meng, Xavier Velez, Weiran Wang, Diamantino Caseiro, Golan Pundak, Tsendsuren Munkhdalai, Angad Chandorkar, Rohit Prabhavalkar
Contextual biasing enables speech recognizers to transcribe important phrases in the speaker's context, such as contact names, even if they are rare in, or absent from, the training data.
no code implementations • 8 Jan 2024 • Christopher Li, Gary Wang, Kyle Kastner, Heng Su, Allen Chen, Andrew Rosenberg, Zhehuai Chen, Zelin Wu, Leonid Velikovich, Pat Rondon, Diamantino Caseiro, Petar Aleksic
In this paper, we eliminate the hypothesis-audio mismatch problem by querying the correction database directly using embeddings derived from the utterance audio; the embeddings of the utterance audio and candidate corrections are produced by multimodal speech-text embedding networks trained to place the embedding of the audio of an utterance and the embedding of its corresponding textual transcript close together.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 30 Sep 2023 • Mingqiu Wang, Wei Han, Izhak Shafran, Zelin Wu, Chung-Cheng Chiu, Yuan Cao, Yongqiang Wang, Nanxin Chen, Yu Zhang, Hagen Soltau, Paul Rubenstein, Lukas Zilka, Dian Yu, Zhong Meng, Golan Pundak, Nikhil Siddhartha, Johan Schalkwyk, Yonghui Wu
We present a joint Speech and Language Model (SLM), a multitask, multilingual, and dual-modal model that takes advantage of pretrained foundational speech and language models.
no code implementations • 29 Sep 2023 • Weiran Wang, Zelin Wu, Diamantino Caseiro, Tsendsuren Munkhdalai, Khe Chai Sim, Pat Rondon, Golan Pundak, Gan Song, Rohit Prabhavalkar, Zhong Meng, Ding Zhao, Tara Sainath, Pedro Moreno Mengibar
Contextual biasing refers to the problem of biasing the automatic speech recognition (ASR) systems towards rare entities that are relevant to the specific user or application scenarios.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 23 Mar 2023 • Sepand Mavandadi, Tara N. Sainath, Ke Hu, Zelin Wu
We propose a new two-pass E2E speech recognition model that improves ASR performance by training on a combination of paired data and unpaired text data.
no code implementations • 29 Aug 2022 • Shuo-Yiin Chang, Guru Prakash, Zelin Wu, Qiao Liang, Tara N. Sainath, Bo Li, Adam Stambler, Shyam Upadhyay, Manaal Faruqui, Trevor Strohman
In voice-enabled applications, a predetermined hotword isusually used to activate a device in order to attend to the query. However, speaking queries followed by a hotword each timeintroduces a cognitive burden in continued conversations.
no code implementations • 25 Sep 2019 • Andrew Rosenberg, Yu Zhang, Bhuvana Ramabhadran, Ye Jia, Pedro Moreno, Yonghui Wu, Zelin Wu
Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human speech that is used to train speech recognizers.
no code implementations • 1 Jul 2019 • Cal Peyser, Hao Zhang, Tara N. Sainath, Zelin Wu
This out-of-vocabulary (OOV) issue is addressed in conventional ASR systems by training part of the model on spoken domain utterances (e. g.
2 code implementations • 21 Feb 2019 • Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models.
5 code implementations • 11 Oct 2018 • Quan Wang, Hannah Muckenhirn, Kevin Wilson, Prashant Sridhar, Zelin Wu, John Hershey, Rif A. Saurous, Ron J. Weiss, Ye Jia, Ignacio Lopez Moreno
In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker.