no code implementations • 26 Dec 2024 • Zexiong Ma, Shengnan An, Zeqi Lin, Yanzhen Zou, Bing Xie
Large Language Models (LLMs) outperform Small Language Models (SLMs) in complex tasks like repository-level issue resolving, but raise concerns about privacy and cost.
no code implementations • 19 Dec 2024 • Zexiong Ma, Shengnan An, Zeqi Lin, Yanzhen Zou, Jian-Guang Lou, Bing Xie
Specifically, (1) for fact fabrication, we apply the context-aware negative training that fine-tunes the LLMs with negative supervisions, thus explicitly guiding the LLMs to refuse to answer when contexts are not related to questions; (2) for fact omission, we propose the information-calibrated aggregation which prioritizes context windows with higher information increment from their contexts.
no code implementations • 7 Nov 2024 • Minjia Wang, Pingping Lin, Siqi Cai, Shengnan An, Shengjie Ma, Zeqi Lin, Congrui Huang, Bixiong Xu
Content moderation, the process of reviewing and monitoring the safety of generated content, is important for development of welcoming online platforms and responsible large language models.
no code implementations • 1 Nov 2024 • Chenghua Huang, Zhizhen Fan, Lu Wang, Fangkai Yang, Pu Zhao, Zeqi Lin, QIngwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang
Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences, playing a pivotal role in the success of conversational models like GPT-4, ChatGPT, and Llama 2.
no code implementations • 18 Sep 2024 • Liyuan Liu, Young Jin Kim, Shuohang Wang, Chen Liang, Yelong Shen, Hao Cheng, Xiaodong Liu, Masahiro Tanaka, Xiaoxia Wu, Wenxiang Hu, Vishrav Chaudhary, Zeqi Lin, Chenruidong Zhang, Jilong Xue, Hany Awadalla, Jianfeng Gao, Weizhu Chen
Mixture-of-Experts (MoE) models scale more effectively than dense models due to sparse computation through expert routing, selectively activating only a small subset of expert modules.
3 code implementations • 25 Apr 2024 • Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou
While many contemporary large language models (LLMs) can process lengthy input, they still struggle to fully utilize information within the long context, known as the lost-in-the-middle challenge.
no code implementations • 22 Apr 2024 • Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, ZiYi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, Xiren Zhou
We introduce phi-3-mini, a 3. 8 billion parameter language model trained on 3. 3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3. 5 (e. g., phi-3-mini achieves 69% on MMLU and 8. 38 on MT-bench), despite being small enough to be deployed on a phone.
Ranked #5 on
MMR total
on MRR-Benchmark
(using extra training data)
no code implementations • 29 Feb 2024 • Zexiong Ma, Shengnan An, Bing Xie, Zeqi Lin
However, the performance remains unsatisfactory in generating library-oriented code, especially for the libraries not present in the training data of LLMs.
1 code implementation • 31 Oct 2023 • Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, Weizhu Chen
To further improve their reasoning capabilities, this work explores whether LLMs can LEarn from MistAkes (LEMA), akin to the human learning process.
no code implementations • 23 May 2023 • Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, Jian-Guang Lou
Few-shot selection -- selecting appropriate examples for each test instance separately -- is important for in-context learning.
no code implementations • 8 May 2023 • Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, Dongmei Zhang
Compositional generalization--understanding unseen combinations of seen primitives--is an essential reasoning capability in human intelligence.
1 code implementation • 23 Feb 2023 • Shengnan An, Zeqi Lin, Bei Chen, Qiang Fu, Nanning Zheng, Jian-Guang Lou
Abstraction is a desirable capability for deep learning models, which means to induce abstract concepts from concrete instances and flexibly apply them beyond the learning context.
1 code implementation • 31 Oct 2022 • Daoguang Zan, Bei Chen, Zeqi Lin, Bei guan, Yongji Wang, Jian-Guang Lou
In this paper, we investigate how to equip pre-trained language models with the ability of code generation for private libraries.
1 code implementation • 21 Jul 2022 • Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, Weizhu Chen
A natural way to evaluate the quality and correctness of a code solution is to run it against a set of test cases, but the manual creation of such test cases is often costly and time-consuming.
Ranked #4 on
Code Generation
on APPS
1 code implementation • 14 Jun 2022 • Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei guan, Yongji Wang, Weizhu Chen, Jian-Guang Lou
Usually, expensive text-code paired data is essential for training a code generation model.
no code implementations • 6 Jun 2022 • Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, Weizhu Chen
Few-shot learning is a challenging task that requires language models to generalize from limited examples.
Ranked #54 on
Arithmetic Reasoning
on GSM8K
no code implementations • 7 Mar 2022 • Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen, Qiang Fu, Weizhu Chen, Nanning Zheng, Jian-Guang Lou
This motivates us to propose input-tuning, which fine-tunes both the continuous prompts and the input representations, leading to a more effective way to adapt unfamiliar inputs to frozen PLMs.
1 code implementation • 27 Jan 2022 • Xinyu Pi, Qian Liu, Bei Chen, Morteza Ziyadi, Zeqi Lin, Qiang Fu, Yan Gao, Jian-Guang Lou, Weizhu Chen
Reasoning over natural language is a long-standing goal for the research community.
Ranked #2 on
Question Answering
on DROP Test
(using extra training data)
4 code implementations • ICLR 2022 • Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou
TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus.
Ranked #1 on
Semantic Parsing
on WikiSQL
(Denotation accuracy (test) metric)
2 code implementations • Findings (ACL) 2021 • Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei Chen, Jian-Guang Lou, Lijie Wen, Nanning Zheng, Dongmei Zhang
In this paper, we propose LeAR, an end-to-end neural model to learn algebraic recombination for compositional generalization.
Ranked #2 on
Semantic Parsing
on CFQ
no code implementations • 13 Dec 2020 • Yinuo Guo, Zeqi Lin, Jian-Guang Lou, Dongmei Zhang
Experiments on Geo, ComplexWebQuestions, and Formulas show that our framework can consistently improve performances of neural semantic parsers in different domains.
no code implementations • 8 Dec 2020 • Yinuo Guo, Hualei Zhu, Zeqi Lin, Bei Chen, Jian-Guang Lou, Dongmei Zhang
Human intelligence exhibits compositional generalization (i. e., the capacity to understand and produce unseen combinations of seen components), but current neural seq2seq models lack such ability.
no code implementations • NeurIPS 2020 • Yinuo Guo, Zeqi Lin, Jian-Guang Lou, Dongmei Zhang
We formalize human language understanding as a structured prediction task where the output is a partially ordered set (poset).
Ranked #4 on
Semantic Parsing
on CFQ
1 code implementation • NeurIPS 2020 • Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen, Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, Dongmei Zhang
Compositional generalization is a basic and essential intellective capability of human beings, which allows us to recombine known parts readily.