1 code implementation • COLING 2022 • Zezhong Xu, Peng Ye, Hui Chen, Meng Zhao, Huajun Chen, Wen Zhang
Based on this idea, we propose a transformer-based rule mining approach, Ruleformer.
1 code implementation • 26 Jun 2024 • Wen Zhang, Yajing Xu, Peng Ye, Zhiwei Huang, Zezhong Xu, Jiaoyan Chen, Jeff Z. Pan, Huajun Chen
In this paper, we propose a novel graph-level automatic KG completion task called Triple Set Prediction (TSP) which assumes none of the elements in the missing triples is given.
no code implementations • 19 Mar 2024 • Zezhong Xu, Peng Ye, Lei Liang, Huajun Chen, Wen Zhang
Answering logical queries on knowledge graphs (KG) poses a significant challenge for machine reasoning.
no code implementations • 19 Mar 2024 • Zezhong Xu, Yincen Qu, Wen Zhang, Lei Liang, Huajun Chen
This homogenization limits the precise exploitation of knowledge graph data and interest connectivity.
no code implementations • 3 Feb 2023 • Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, Huajun Chen
In this paper, we use a set of general terminologies to unify these methods and refer to them collectively as Knowledge Extrapolation.
no code implementations • 19 Sep 2022 • Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, Huajun Chen
In this work, we propose a Neural and Symbolic Entangled framework (ENeSy) for complex query answering, which enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness.
1 code implementation • 22 May 2022 • Yincen Qu, Ningyu Zhang, Hui Chen, Zelin Dai, Zezhong Xu, Chengming Wang, Xiaoyu Wang, Qiang Chen, Huajun Chen
In addition to formulating the new task, we also release a new Benchmark dataset of Salience Evaluation in E-commerce (BSEE) and hope to promote related research on commonsense knowledge salience evaluation.
1 code implementation • 25 Feb 2022 • Wen Zhang, Xiangnan Chen, Zhen Yao, Mingyang Chen, Yushan Zhu, Hongtao Yu, Yufeng Huang, Zezhong Xu, Yajing Xu, Ningyu Zhang, Zonggang Yuan, Feiyu Xiong, Huajun Chen
NeuralKG is an open-source Python-based library for diverse representation learning of knowledge graphs.
no code implementations • 15 Feb 2022 • Wen Zhang, Jiaoyan Chen, Juan Li, Zezhong Xu, Jeff Z. Pan, Huajun Chen
Knowledge graph (KG) reasoning is becoming increasingly popular in both academia and industry.
no code implementations • 29 Sep 2021 • Wen Zhang, Mingyang Chen, Zezhong Xu, Yushan Zhu, Huajun Chen
KGExplainer is a multi-hop reasoner learning latent rules for link prediction and is encouraged to behave similarly to KGEs during prediction through knowledge distillation.