Search Results for author: Zhaopeng Qiu

Found 11 papers, 6 papers with code

A Cross-View Hierarchical Graph Learning Hypernetwork for Skill Demand-Supply Joint Prediction

1 code implementation31 Jan 2024 Wenshuo Chao, Zhaopeng Qiu, Likang Wu, Zhuoning Guo, Zhi Zheng, HengShu Zhu, Hao liu

The rapidly changing landscape of technology and industries leads to dynamic skill requirements, making it crucial for employees and employers to anticipate such shifts to maintain a competitive edge in the labor market.

Decoder Graph Learning +2

Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations

1 code implementation10 Jul 2023 Likang Wu, Zhaopeng Qiu, Zhi Zheng, HengShu Zhu, Enhong Chen

This paper focuses on unveiling the capability of large language models in understanding behavior graphs and leveraging this understanding to enhance recommendations in online recruitment, including the promotion of out-of-distribution (OOD) application.

Language Modelling Large Language Model +1

Generative Job Recommendations with Large Language Model

no code implementations5 Jul 2023 Zhi Zheng, Zhaopeng Qiu, Xiao Hu, Likang Wu, HengShu Zhu, Hui Xiong

The rapid development of online recruitment services has encouraged the utilization of recommender systems to streamline the job seeking process.

Collaborative Filtering Language Modelling +3

A Survey on Large Language Models for Recommendation

2 code implementations31 May 2023 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu, HengShu Zhu, Qi Liu, Hui Xiong, Enhong Chen

Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS).

Recommendation Systems +1

Denoising Neural Network for News Recommendation with Positive and Negative Implicit Feedback

no code implementations Findings (NAACL) 2022 Yunfan Hu, Zhaopeng Qiu, Xian Wu

On one hand, the user may exit immediately after clicking the news as he dislikes the news content, leaving the noise in his positive implicit feedback; on the other hand, the user may be recommended multiple interesting news at the same time and only click one of them, producing the noise in his negative implicit feedback.

Denoising News Recommendation

Conditional Generation Net for Medication Recommendation

1 code implementation14 Feb 2022 Rui Wu, Zhaopeng Qiu, Jiacheng Jiang, Guilin Qi, Xian Wu

Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.

Multi-Label Classification

Automatic Distractor Generation for Multiple Choice Questions in Standard Tests

no code implementations COLING 2020 Zhaopeng Qiu, Xian Wu, Wei Fan

To assess the knowledge proficiency of a learner, multiple choice question is an efficient and widespread form in standard tests.

Distractor Generation Multiple-choice

Cannot find the paper you are looking for? You can Submit a new open access paper.