Search Results for author: Zhen Liu

Found 33 papers, 14 papers with code

NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results

no code implementations25 May 2022 Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Richard Shaw, Aleš Leonardis, Radu Timofte, Zexin Zhang, Cen Liu, Yunbo Peng, Yue Lin, Gaocheng Yu, Jin Zhang, Zhe Ma, Hongbin Wang, Xiangyu Chen, Xintao Wang, Haiwei Wu, Lin Liu, Chao Dong, Jiantao Zhou, Qingsen Yan, Song Zhang, Weiye Chen, Yuhang Liu, Zhen Zhang, Yanning Zhang, Javen Qinfeng Shi, Dong Gong, Dan Zhu, Mengdi Sun, Guannan Chen, Yang Hu, Haowei Li, Baozhu Zou, Zhen Liu, Wenjie Lin, Ting Jiang, Chengzhi Jiang, Xinpeng Li, Mingyan Han, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Juan Marín-Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Chunyang Li, Long Bao, Gang He, Ziyao Xu, Li Xu, Gen Zhan, Ming Sun, Xing Wen, Junlin Li, Shuang Feng, Fei Lei, Rui Liu, Junxiang Ruan, Tianhong Dai, Wei Li, Zhan Lu, Hengyan Liu, Peian Huang, Guangyu Ren, Yonglin Luo, Chang Liu, Qiang Tu, Fangya Li, Ruipeng Gang, Chenghua Li, Jinjing Li, Sai Ma, Chenming Liu, Yizhen Cao, Steven Tel, Barthelemy Heyrman, Dominique Ginhac, Chul Lee, Gahyeon Kim, Seonghyun Park, An Gia Vien, Truong Thanh Nhat Mai, Howoon Yoon, Tu Vo, Alexander Holston, Sheir Zaheer, Chan Y. Park

The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i. e. solutions can not exceed a given number of operations).

Generative Flow Networks for Discrete Probabilistic Modeling

1 code implementation3 Feb 2022 Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, Yoshua Bengio

We present energy-based generative flow networks (EB-GFN), a novel probabilistic modeling algorithm for high-dimensional discrete data.

VirtualCube: An Immersive 3D Video Communication System

no code implementations13 Dec 2021 Yizhong Zhang, Jiaolong Yang, Zhen Liu, Ruicheng Wang, Guojun Chen, Xin Tong, Baining Guo

The VirtualCube system is a 3D video conference system that attempts to overcome some limitations of conventional technologies.

Depth Estimation

Hierarchical clustering by aggregating representatives in sub-minimum-spanning-trees

1 code implementation11 Nov 2021 Wen-Bo Xie, Zhen Liu, Jaideep Srivastava

One of the main challenges for hierarchical clustering is how to appropriately identify the representative points in the lower level of the cluster tree, which are going to be utilized as the roots in the higher level of the cluster tree for further aggregation.

Iterative Teaching by Label Synthesis

no code implementations NeurIPS 2021 Weiyang Liu, Zhen Liu, Hanchen Wang, Liam Paull, Bernhard Schölkopf, Adrian Weller

In this paper, we consider the problem of iterative machine teaching, where a teacher provides examples sequentially based on the current iterative learner.

A Generic Knowledge Based Medical Diagnosis Expert System

no code implementations9 Oct 2021 Xin Huang, Xuejiao Tang, Wenbin Zhang, Shichao Pei, Ji Zhang, Mingli Zhang, Zhen Liu, Ruijun Chen, Yiyi Huang

The proposed disease diagnosis system also uses a graphical user interface (GUI) to facilitate users to interact with the expert system.

Medical Diagnosis

Learnability and Expressiveness in Self-Supervised Learning

no code implementations29 Sep 2021 Yuchen Lu, Zhen Liu, Alessandro Sordoni, Aristide Baratin, Romain Laroche, Aaron Courville

In this work, we argue that representations induced by self-supervised learning (SSL) methods should both be expressive and learnable.

Data Augmentation Self-Supervised Learning

ADNet: Attention-guided Deformable Convolutional Network for High Dynamic Range Imaging

2 code implementations22 May 2021 Zhen Liu, Wenjie Lin, Xinpeng Li, Qing Rao, Ting Jiang, Mingyan Han, Haoqiang Fan, Jian Sun, Shuaicheng Liu

In this paper, we present an attention-guided deformable convolutional network for hand-held multi-frame high dynamic range (HDR) imaging, namely ADNet.


LSTM Based Sentiment Analysis for Cryptocurrency Prediction

no code implementations27 Mar 2021 Xin Huang, Wenbin Zhang, Xuejiao Tang, Mingli Zhang, Jayachander Surbiryala, Vasileios Iosifidis, Zhen Liu, Ji Zhang

Recent studies in big data analytics and natural language processing develop automatic techniques in analyzing sentiment in the social media information.

Sentiment Analysis

Learning with Hyperspherical Uniformity

1 code implementation2 Mar 2021 Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schölkopf, Adrian Weller

Due to the over-parameterization nature, neural networks are a powerful tool for nonlinear function approximation.

L2 Regularization

A Bayesian Spatial Modeling Approach to Mortality Forecasting

no code implementations23 Feb 2021 Zhen Liu, Xiaoqian Sun, Yu-Bo Wang

This paper extends Bayesian mortality projection models for multiple populations considering the stochastic structure and the effect of spatial autocorrelation among the observations.


A Data-driven Human Responsibility Management System

no code implementations6 Dec 2020 Xuejiao Tang, Jiong Qiu, Ruijun Chen, Wenbin Zhang, Vasileios Iosifidis, Zhen Liu, Wei Meng, Mingli Zhang, Ji Zhang

An ideal safe workplace is described as a place where staffs fulfill responsibilities in a well-organized order, potential hazardous events are being monitored in real-time, as well as the number of accidents and relevant damages are minimized.

Orthogonal Over-Parameterized Training

1 code implementation CVPR 2021 Weiyang Liu, Rongmei Lin, Zhen Liu, James M. Rehg, Liam Paull, Li Xiong, Le Song, Adrian Weller

The inductive bias of a neural network is largely determined by the architecture and the training algorithm.

Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2

no code implementations17 Mar 2020 Waleed Abdallah, Shehu AbdusSalam, Azar Ahmadov, Amine Ahriche, Gaël Alguero, Benjamin C. Allanach, Jack Y. Araz, Alexandre Arbey, Chiara Arina, Peter Athron, Emanuele Bagnaschi, Yang Bai, Michael J. Baker, Csaba Balazs, Daniele Barducci, Philip Bechtle, Aoife Bharucha, Andy Buckley, Jonathan Butterworth, Haiying Cai, Claudio Campagnari, Cari Cesarotti, Marcin Chrzaszcz, Andrea Coccaro, Eric Conte, Jonathan M. Cornell, Louie Dartmoor Corpe, Matthias Danninger, Luc Darmé, Aldo Deandrea, Nishita Desai, Barry Dillon, Caterina Doglioni, Juhi Dutta, John R. Ellis, Sebastian Ellis, Farida Fassi, Matthew Feickert, Nicolas Fernandez, Sylvain Fichet, Jernej F. Kamenik, Thomas Flacke, Benjamin Fuks, Achim Geiser, Marie-Hélène Genest, Akshay Ghalsasi, Tomas Gonzalo, Mark Goodsell, Stefania Gori, Philippe Gras, Admir Greljo, Diego Guadagnoli, Sven Heinemeyer, Lukas A. Heinrich, Jan Heisig, Deog Ki Hong, Tetiana Hryn'ova, Katri Huitu, Philip Ilten, Ahmed Ismail, Adil Jueid, Felix Kahlhoefer, Jan Kalinowski, Deepak Kar, Yevgeny Kats, Charanjit K. Khosa, Valeri Khoze, Tobias Klingl, Pyungwon Ko, Kyoungchul Kong, Wojciech Kotlarski, Michael Krämer, Sabine Kraml, Suchita Kulkarni, Anders Kvellestad, Clemens Lange, Kati Lassila-Perini, Seung J. Lee, Andre Lessa, Zhen Liu, Lara Lloret Iglesias, Jeanette M. Lorenz, Danika MacDonell, Farvah Mahmoudi, Judita Mamuzic, Andrea C. Marini, Pete Markowitz, Pablo Martinez Ruiz del Arbol, David Miller, Vasiliki Mitsou, Stefano Moretti, Marco Nardecchia, Siavash Neshatpour, Dao Thi Nhung, Per Osland, Patrick H. Owen, Orlando Panella, Alexander Pankov, Myeonghun Park, Werner Porod, Darren Price, Harrison Prosper, Are Raklev, Jürgen Reuter, Humberto Reyes-González, Thomas Rizzo, Tania Robens, Juan Rojo, Janusz A. Rosiek, Oleg Ruchayskiy, Veronica Sanz, Kai Schmidt-Hoberg, Pat Scott, Sezen Sekmen, Dipan Sengupta, Elizabeth Sexton-Kennedy, Hua-Sheng Shao, Seodong Shin, Luca Silvestrini, Ritesh Singh, Sukanya Sinha, Jory Sonneveld, Yotam Soreq, Giordon H. Stark, Tim Stefaniak, Jesse Thaler, Riccardo Torre, Emilio Torrente-Lujan, Gokhan Unel, Natascia Vignaroli, Wolfgang Waltenberger, Nicholas Wardle, Graeme Watt, Georg Weiglein, Martin J. White, Sophie L. Williamson, Jonas Wittbrodt, Lei Wu, Stefan Wunsch, Tevong You, Yang Zhang, José Zurita

We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum.

High Energy Physics - Phenomenology High Energy Physics - Experiment

NEW: A Generic Learning Model for Tie Strength Prediction in Networks

no code implementations15 Jan 2020 Zhen Liu, Hu Li, Chao Wang

Tie strength prediction, sometimes named weight prediction, is vital in exploring the diversity of connectivity pattern emerged in networks.

A Compared Study Between Some Subspace Based Algorithms

no code implementations23 Dec 2019 Xing Liu, Xiao-Jun Wu, Zhen Liu, He-Feng Yin

The technology of face recognition has made some progress in recent years.

Face Recognition

Visual-Textual Association with Hardest and Semi-Hard Negative Pairs Mining for Person Search

no code implementations6 Dec 2019 Jing Ge, Guangyu Gao, Zhen Liu

In order to evaluate the effectiveness and feasibility of the proposed approach, we conduct extensive experiments on typical person search datasdet: CUHK-PEDES, in which our approach achieves the top1 score of 55. 32% as a new state-of-the-art.

Person Search

Neural Similarity Learning

1 code implementation NeurIPS 2019 Weiyang Liu, Zhen Liu, James M. Rehg, Le Song

By generalizing inner product with a bilinear matrix, we propose the neural similarity which serves as a learnable parametric similarity measure for CNNs.

Few-Shot Learning

Context-endcoding for neural network based skull stripping in magnetic resonance imaging

no code implementations23 Oct 2019 Zhen Liu, Borui Xiao, Yuemeng Li, Yong Fan

Skull stripping is usually the first step for most brain analysisprocess in magnetic resonance images.

Skull Stripping

Regularizing Neural Networks via Minimizing Hyperspherical Energy

1 code implementation CVPR 2020 Rongmei Lin, Weiyang Liu, Zhen Liu, Chen Feng, Zhiding Yu, James M. Rehg, Li Xiong, Le Song

Inspired by the Thomson problem in physics where the distribution of multiple propelling electrons on a unit sphere can be modeled via minimizing some potential energy, hyperspherical energy minimization has demonstrated its potential in regularizing neural networks and improving their generalization power.

Exponential Family Estimation via Adversarial Dynamics Embedding

1 code implementation NeurIPS 2019 Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans

We present an efficient algorithm for maximum likelihood estimation (MLE) of exponential family models, with a general parametrization of the energy function that includes neural networks.

Coupled Variational Bayes via Optimization Embedding

1 code implementation NeurIPS 2018 Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song

This flexible function class couples the variational distribution with the original parameters in the graphical models, allowing end-to-end learning of the graphical models by back-propagation through the variational distribution.

Variational Inference

Learning towards Minimum Hyperspherical Energy

4 code implementations NeurIPS 2018 Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song

In light of this intuition, we reduce the redundancy regularization problem to generic energy minimization, and propose a minimum hyperspherical energy (MHE) objective as generic regularization for neural networks.

Decoupled Networks

1 code implementation CVPR 2018 Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M. Rehg, Le Song

Inner product-based convolution has been a central component of convolutional neural networks (CNNs) and the key to learning visual representations.

SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation

no code implementations ICML 2018 Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, Le Song

When function approximation is used, solving the Bellman optimality equation with stability guarantees has remained a major open problem in reinforcement learning for decades.

Q-Learning reinforcement-learning

Deep Forward and Inverse Perceptual Models for Tracking and Prediction

no code implementations31 Oct 2017 Alexander Lambert, Amirreza Shaban, Amit Raj, Zhen Liu, Byron Boots

We consider the problems of learning forward models that map state to high-dimensional images and inverse models that map high-dimensional images to state in robotics.

Image Generation

Towards Black-box Iterative Machine Teaching

no code implementations ICML 2018 Weiyang Liu, Bo Dai, Xingguo Li, Zhen Liu, James M. Rehg, Le Song

We propose an active teacher model that can actively query the learner (i. e., make the learner take exams) for estimating the learner's status and provably guide the learner to achieve faster convergence.

Kernelized Deep Convolutional Neural Network for Describing Complex Images

no code implementations15 Sep 2015 Zhen Liu

With the impressive capability to capture visual content, deep convolutional neural networks (CNN) have demon- strated promising performance in various vision-based ap- plications, such as classification, recognition, and objec- t detection.

Content-Based Image Retrieval Translation

Efficient Bayesian analysis of multiple changepoint models with dependence across segments

1 code implementation16 Oct 2009 Paul Fearnhead, Zhen Liu

We consider Bayesian analysis of a class of multiple changepoint models.

Cannot find the paper you are looking for? You can Submit a new open access paper.