no code implementations • 2 Dec 2024 • Rui Ye, Xianghe Pang, Jingyi Chai, Jiaao Chen, Zhenfei Yin, Zhen Xiang, Xiaowen Dong, Jing Shao, Siheng Chen
However, the unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.
1 code implementation • 18 Nov 2024 • ZiYi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong Chen, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun Wang, Bernard Ghanem, Huchuan Lu, Chaochao Lu, Wanli Ouyang, Yu Qiao, Philip Torr, Jing Shao
There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i. e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems.
no code implementations • 23 Oct 2024 • Yiran Qin, Zhelun Shi, Jiwen Yu, Xijun Wang, Enshen Zhou, Lijun Li, Zhenfei Yin, Xihui Liu, Lu Sheng, Jing Shao, Lei Bai, Wanli Ouyang, Ruimao Zhang
WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks, covering three representative embodied scenarios: Open-Ended Embodied Environment, Autonomous, Driving, and Robot Manipulation.
1 code implementation • 12 Oct 2024 • Haoyang Su, Renqi Chen, Shixiang Tang, Xinzhe Zheng, Jingzhe Li, Zhenfei Yin, Wanli Ouyang, Nanqing Dong
The rapid advancement of scientific progress requires innovative tools that can accelerate discovery.
no code implementations • 30 Jun 2024 • Yisong Xiao, Aishan Liu, QianJia Cheng, Zhenfei Yin, Siyuan Liang, Jiapeng Li, Jing Shao, Xianglong Liu, DaCheng Tao
For the first time, this paper introduces the GenderBias-\emph{VL} benchmark to evaluate occupation-related gender bias in LVLMs using counterfactual visual questions under individual fairness criteria.
1 code implementation • 17 Jun 2024 • Yongting Zhang, Lu Chen, Guodong Zheng, Yifeng Gao, Rui Zheng, Jinlan Fu, Zhenfei Yin, Senjie Jin, Yu Qiao, Xuanjing Huang, Feng Zhao, Tao Gui, Jing Shao
To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL.
no code implementations • 28 Mar 2024 • Zeren Chen, Zhelun Shi, Xiaoya Lu, Lehan He, Sucheng Qian, Hao Shu Fang, Zhenfei Yin, Wanli Ouyang, Jing Shao, Yu Qiao, Cewu Lu, Lu Sheng
The ultimate goals of robotic learning is to acquire a comprehensive and generalizable robotic system capable of performing both seen skills within the training distribution and unseen skills in novel environments.
1 code implementation • 26 Mar 2024 • Zhelun Shi, Zhipin Wang, Hongxing Fan, Zaibin Zhang, Lijun Li, Yongting Zhang, Zhenfei Yin, Lu Sheng, Yu Qiao, Jing Shao
Large Language Models (LLMs) aim to serve as versatile assistants aligned with human values, as defined by the principles of being helpful, honest, and harmless (hhh).
1 code implementation • 18 Mar 2024 • Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang, Ruimao Zhang, Lu Sheng, Yu Qiao, Jing Shao
It is a long-lasting goal to design a generalist-embodied agent that can follow diverse instructions in human-like ways.
1 code implementation • 29 Feb 2024 • Chen Qian, Jie Zhang, Wei Yao, Dongrui Liu, Zhenfei Yin, Yu Qiao, Yong liu, Jing Shao
This research provides an initial exploration of trustworthiness modeling during LLM pre-training, seeking to unveil new insights and spur further developments in the field.
no code implementations • 26 Jan 2024 • Chaochao Lu, Chen Qian, Guodong Zheng, Hongxing Fan, Hongzhi Gao, Jie Zhang, Jing Shao, Jingyi Deng, Jinlan Fu, Kexin Huang, Kunchang Li, Lijun Li, LiMin Wang, Lu Sheng, Meiqi Chen, Ming Zhang, Qibing Ren, Sirui Chen, Tao Gui, Wanli Ouyang, Yali Wang, Yan Teng, Yaru Wang, Yi Wang, Yinan He, Yingchun Wang, Yixu Wang, Yongting Zhang, Yu Qiao, Yujiong Shen, Yurong Mou, Yuxi Chen, Zaibin Zhang, Zhelun Shi, Zhenfei Yin, Zhipin Wang
Multi-modal Large Language Models (MLLMs) have shown impressive abilities in generating reasonable responses with respect to multi-modal contents.
2 code implementations • 14 Dec 2023 • Zhiyuan You, Zheyuan Li, Jinjin Gu, Zhenfei Yin, Tianfan Xue, Chao Dong
To build the DepictQA model, we establish a hierarchical task framework, and collect a multi-modal IQA training dataset.
1 code implementation • CVPR 2024 • Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin, Lu Sheng, Ruimao Zhang, Yu Qiao, Jing Shao
It is a long-lasting goal to design an embodied system that can solve long-horizon open-world tasks in human-like ways.
1 code implementation • 5 Nov 2023 • Zeren Chen, Ziqin Wang, Zhen Wang, Huayang Liu, Zhenfei Yin, Si Liu, Lu Sheng, Wanli Ouyang, Yu Qiao, Jing Shao
While this phenomenon has been overlooked in previous work, we propose a novel and extensible framework, called Octavius, for comprehensive studies and experimentation on multimodal learning with Multimodal Large Language Models (MLLMs).
1 code implementation • 5 Nov 2023 • Zhelun Shi, Zhipin Wang, Hongxing Fan, Zhenfei Yin, Lu Sheng, Yu Qiao, Jing Shao
We will publicly release all the detailed implementations for further analysis, as well as an easy-to-use modular toolkit for the integration of new recipes and models, so that ChEF can be a growing evaluation framework for the MLLM community.
2 code implementations • NeurIPS 2023 • Zhenfei Yin, Jiong Wang, JianJian Cao, Zhelun Shi, Dingning Liu, Mukai Li, Lu Sheng, Lei Bai, Xiaoshui Huang, Zhiyong Wang, Jing Shao, Wanli Ouyang
To the best of our knowledge, we present one of the very first open-source endeavors in the field, LAMM, encompassing a Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
3 code implementations • 16 May 2023 • Qinghong Sun, Zhenfei Yin, Yichao Wu, Yuanhan Zhang, Jing Shao
In this work, we propose a unified framework called Latent Distribution Adjusting (LDA) with properties of latent, discriminative, adaptive, generic to improve the robustness of the FAS model by adjusting complex data distribution with multiple prototypes.
no code implementations • 17 Dec 2022 • Yuan YAO, Yuanhan Zhang, Zhenfei Yin, Jiebo Luo, Wanli Ouyang, Xiaoshui Huang
The recent success of pre-trained 2D vision models is mostly attributable to learning from large-scale datasets.
1 code implementation • 14 Jul 2022 • Yuanhan Zhang, Zhenfei Yin, Jing Shao, Ziwei Liu
We benchmark ReCo and other advances in omni-vision representation studies that are different in architectures (from CNNs to transformers) and in learning paradigms (from supervised learning to self-supervised learning) on OmniBenchmark.
no code implementations • 27 Apr 2022 • Yuanhan Zhang, Yichao Wu, Zhenfei Yin, Jing Shao, Ziwei Liu
In this work, we attempt to fill this gap by automatically addressing the noise problem from both label and data perspectives in a probabilistic manner.
no code implementations • 16 Mar 2022 • Yinan He, Gengshi Huang, Siyu Chen, Jianing Teng, Wang Kun, Zhenfei Yin, Lu Sheng, Ziwei Liu, Yu Qiao, Jing Shao
2) Squeeze Stage: X-Learner condenses the model to a reasonable size and learns the universal and generalizable representation for various tasks transferring.
2 code implementations • 15 Mar 2022 • Yuanhan Zhang, Qinghong Sun, Yichun Zhou, Zexin He, Zhenfei Yin, Kun Wang, Lu Sheng, Yu Qiao, Jing Shao, Ziwei Liu
This work thus proposes a novel active learning framework for realistic dataset annotation.
Ranked #1 on Image Classification on Food-101 (using extra training data)
no code implementations • 24 Nov 2021 • Yujie Wang, Junqin Huang, Mengya Gao, Yichao Wu, Zhenfei Yin, Ding Liang, Junjie Yan
Transferring with few data in a general way to thousands of downstream tasks is becoming a trend of the foundation model's application.
no code implementations • 16 Nov 2021 • Jing Shao, Siyu Chen, Yangguang Li, Kun Wang, Zhenfei Yin, Yinan He, Jianing Teng, Qinghong Sun, Mengya Gao, Jihao Liu, Gengshi Huang, Guanglu Song, Yichao Wu, Yuming Huang, Fenggang Liu, Huan Peng, Shuo Qin, Chengyu Wang, Yujie Wang, Conghui He, Ding Liang, Yu Liu, Fengwei Yu, Junjie Yan, Dahua Lin, Xiaogang Wang, Yu Qiao
Enormous waves of technological innovations over the past several years, marked by the advances in AI technologies, are profoundly reshaping the industry and the society.
no code implementations • 27 Jun 2021 • Bowen Yang, Jing Zhang, Zhenfei Yin, Jing Shao
In practice, given a handful of labeled samples from a new deployment scenario (target domain) and abundant labeled face images in the existing source domain, the FAS system is expected to perform well in the new scenario without sacrificing the performance on the original domain.
1 code implementation • 25 Feb 2021 • Yuanhan Zhang, Zhenfei Yin, Jing Shao, Ziwei Liu, Shuo Yang, Yuanjun Xiong, Wei Xia, Yan Xu, Man Luo, Jian Liu, Jianshu Li, Zhijun Chen, Mingyu Guo, Hui Li, Junfu Liu, Pengfei Gao, Tianqi Hong, Hao Han, Shijie Liu, Xinhua Chen, Di Qiu, Cheng Zhen, Dashuang Liang, Yufeng Jin, Zhanlong Hao
It is the largest face anti-spoofing dataset in terms of the numbers of the data and the subjects.
1 code implementation • ECCV 2020 • Yuanhan Zhang, Zhenfei Yin, Yidong Li, Guojun Yin, Junjie Yan, Jing Shao, Ziwei Liu
The main reason is that current face anti-spoofing datasets are limited in both quantity and diversity.