1 code implementation • 22 Oct 2020 • Murphy Yuezhen Niu, Andrew M. Dai, Li Li, Augustus Odena, Zhengli Zhao, Vadim Smelyanskyi, Hartmut Neven, Sergio Boixo
Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers.
no code implementations • 4 Jun 2020 • Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, Han Zhang
We provide new state-of-the-art results for conditional generation on CIFAR-10 with both consistency loss and contrastive loss as additional regularizations.
2 code implementations • NeurIPS 2020 • Samarth Sinha, Zhengli Zhao, Anirudh Goyal, Colin Raffel, Augustus Odena
We introduce a simple (one line of code) modification to the Generative Adversarial Network (GAN) training algorithm that materially improves results with no increase in computational cost: When updating the generator parameters, we simply zero out the gradient contributions from the elements of the batch that the critic scores as `least realistic'.
no code implementations • 11 Feb 2020 • Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, Han Zhang
Recent work has increased the performance of Generative Adversarial Networks (GANs) by enforcing a consistency cost on the discriminator.
no code implementations • 2 Oct 2019 • Zhengli Zhao, Nicolas Papernot, Sameer Singh, Neoklis Polyzotis, Augustus Odena
Broad adoption of machine learning techniques has increased privacy concerns for models trained on sensitive data such as medical records.
1 code implementation • ICLR 2018 • Zhengli Zhao, Dheeru Dua, Sameer Singh
Due to their complex nature, it is hard to characterize the ways in which machine learning models can misbehave or be exploited when deployed.