no code implementations • 12 Sep 2024 • Zhengliang Liu, Yiwei Li, Oleksandra Zolotarevych, Rongwei Yang, Tianming Liu
Large language models have demonstrated remarkable capabilities in natural language processing, yet their application to political discourse analysis remains underexplored.
no code implementations • 23 Aug 2024 • Zhenyuan Yang, Xuhui Lin, Qinyi He, Ziye Huang, Zhengliang Liu, Hanqi Jiang, Peng Shu, Zihao Wu, Yiwei Li, Stephen Law, Gengchen Mai, Tianming Liu, Tao Yang
The emergence of Large Language Models (LLMs) and multimodal foundation models (FMs) has generated heightened interest in their applications that integrate vision and language.
no code implementations • 13 Aug 2024 • Yucheng Shi, Peng Shu, Zhengliang Liu, Zihao Wu, Quanzheng Li, Xiang Li
In recent years, the field of radiology has increasingly harnessed the power of artificial intelligence (AI) to enhance diagnostic accuracy, streamline workflows, and improve patient care.
no code implementations • 8 Jul 2024 • Yutong Zhang, Yi Pan, Tianyang Zhong, Peixin Dong, Kangni Xie, Yuxiao Liu, Hanqi Jiang, Zhengliang Liu, Shijie Zhao, Tuo Zhang, Xi Jiang, Dinggang Shen, Tianming Liu, Xin Zhang
Our experimental results demonstrated that Gemini-series models excelled in report generation and lesion detection but faces challenges in disease classification and anatomical localization.
no code implementations • 20 Mar 2024 • Subhabrata Mukherjee, Paul Gamble, Markel Sanz Ausin, Neel Kant, Kriti Aggarwal, Neha Manjunath, Debajyoti Datta, Zhengliang Liu, Jiayuan Ding, Sophia Busacca, Cezanne Bianco, Swapnil Sharma, Rae Lasko, Michelle Voisard, Sanchay Harneja, Darya Filippova, Gerry Meixiong, Kevin Cha, Amir Youssefi, Meyhaa Buvanesh, Howard Weingram, Sebastian Bierman-Lytle, Harpreet Singh Mangat, Kim Parikh, Saad Godil, Alex Miller
We train our models on proprietary data, clinical care plans, healthcare regulatory documents, medical manuals, and other medical reasoning documents.
1 code implementation • 19 Mar 2024 • Chong Ma, Hanqi Jiang, WenTing Chen, Yiwei Li, Zihao Wu, Xiaowei Yu, Zhengliang Liu, Lei Guo, Dajiang Zhu, Tuo Zhang, Dinggang Shen, Tianming Liu, Xiang Li
This data-reliance may lead to low generalization of the learned alignment relationships.
no code implementations • 17 Feb 2024 • Shaochen Xu, Zihao Wu, Huaqin Zhao, Peng Shu, Zhengliang Liu, Wenxiong Liao, Sheng Li, Andrea Sikora, Tianming Liu, Xiang Li
In this study, we leverage LLM to enhance the semantic analysis and develop similarity metrics for texts, addressing the limitations of traditional unsupervised NLP metrics like ROUGE and BLEU.
no code implementations • 9 Feb 2024 • Peng Shu, Huaqin Zhao, Hanqi Jiang, Yiwei Li, Shaochen Xu, Yi Pan, Zihao Wu, Zhengliang Liu, Guoyu Lu, Le Guan, Gong Chen, Xianqiao Wang Tianming Liu
To teach young children how to code and compete in robot challenges, large language models are being utilized for robot code explanation, generation, and modification.
no code implementations • 22 Jan 2024 • Huaqin Zhao, Zhengliang Liu, Zihao Wu, Yiwei Li, Tianze Yang, Peng Shu, Shaochen Xu, Haixing Dai, Lin Zhao, Gengchen Mai, Ninghao Liu, Tianming Liu
Additionally, we conducted holistic tests on multiple financial tasks through the combination of natural language instructions.
1 code implementation • 19 Jan 2024 • Zhengliang Liu, Jason Holmes, Wenxiong Liao, Chenbin Liu, Lian Zhang, Hongying Feng, Peilong Wang, Muhammad Ali Elahi, Hongmin Cai, Lichao Sun, Quanzheng Li, Xiang Li, Tianming Liu, Jiajian Shen, Wei Liu
ROND is specifically designed to address this gap in the domain of radiation oncology, a field that offers many opportunities for NLP exploration.
no code implementations • 13 Jan 2024 • Jie Tian, Jixin Hou, Zihao Wu, Peng Shu, Zhengliang Liu, Yujie Xiang, Beikang Gu, Nicholas Filla, Yiwei Li, Ning Liu, Xianyan Chen, Keke Tang, Tianming Liu, Xianqiao Wang
This study is a pioneering endeavor to investigate the capabilities of Large Language Models (LLMs) in addressing conceptual questions within the domain of mechanical engineering with a focus on mechanics.
1 code implementation • 10 Jan 2024 • Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric Xing, Furong Huang, Hao liu, Heng Ji, Hongyi Wang, huan zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions.
no code implementations • 9 Jan 2024 • Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi, Huawen Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Huaqin Zhao, Zhengliang Liu, Haixing Dai, Lin Zhao, Bao Ge, Xiang Li, Tianming Liu, Shu Zhang
Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.
no code implementations • 4 Jan 2024 • Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan Liu, Jiaming Tian, Yutong Zhang, Jiaqi Wang, Xiaohui Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, Zihao Wu, Zhengliang Liu, Xin Zhang, Shu Zhang, Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, Bao Ge
Low-cost training and deployment of LLMs represent the future development trend.
no code implementations • 23 Dec 2023 • Chenjiao Tan, Qian Cao, Yiwei Li, Jielu Zhang, Xiao Yang, Huaqin Zhao, Zihao Wu, Zhengliang Liu, Hao Yang, Nemin Wu, Tao Tang, Xinyue Ye, Lilong Chai, Ninghao Liu, Changying Li, Lan Mu, Tianming Liu, Gengchen Mai
The advent of large language models (LLMs) has heightened interest in their potential for multimodal applications that integrate language and vision.
no code implementations • 10 Dec 2023 • Gyeong-Geon Lee, Lehong Shi, Ehsan Latif, Yizhu Gao, Arne Bewersdorff, Matthew Nyaaba, Shuchen Guo, Zihao Wu, Zhengliang Liu, Hui Wang, Gengchen Mai, Tiaming Liu, Xiaoming Zhai
This paper presents a comprehensive examination of how multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
no code implementations • 8 Dec 2023 • Huan Zhao, Qian Ling, Yi Pan, Tianyang Zhong, Jin-Yu Hu, Junjie Yao, Fengqian Xiao, Zhenxiang Xiao, Yutong Zhang, San-Hua Xu, Shi-Nan Wu, Min Kang, Zihao Wu, Zhengliang Liu, Xi Jiang, Tianming Liu, Yi Shao
In recent years, pre-trained large language models (LLMs) have achieved tremendous success in the field of Natural Language Processing (NLP).
no code implementations • 2 Dec 2023 • Lian Zhang, Jason M. Holmes, Zhengliang Liu, Hongying Feng, Terence T. Sio, Carlos E. Vargas, Sameer R. Keole, Kristin Stützer, Sheng Li, Tianming Liu, Jiajian Shen, William W. Wong, Sujay A. Vora, Wei Liu
The noisy probing dose method showed better generalizability in the 6 outlier cases than the ROI-based and beam mask-based methods with 3D Gamma passing rates (for prostate cancer, targets: 89. 32%$\pm$1. 45% vs. 93. 48%$\pm$1. 51% vs. 96. 79%$\pm$0. 83%, OARs: 85. 87%$\pm$1. 73% vs. 91. 15%$\pm$1. 13% vs. 94. 29%$\pm$1. 01%).
no code implementations • 10 Nov 2023 • Zhengliang Liu, Hanqi Jiang, Tianyang Zhong, Zihao Wu, Chong Ma, Yiwei Li, Xiaowei Yu, Yutong Zhang, Yi Pan, Peng Shu, Yanjun Lyu, Lu Zhang, Junjie Yao, Peixin Dong, Chao Cao, Zhenxiang Xiao, Jiaqi Wang, Huan Zhao, Shaochen Xu, Yaonai Wei, Jingyuan Chen, Haixing Dai, Peilong Wang, Hao He, Zewei Wang, Xinyu Wang, Xu Zhang, Lin Zhao, Yiheng Liu, Kai Zhang, Liheng Yan, Lichao Sun, Jun Liu, Ning Qiang, Bao Ge, Xiaoyan Cai, Shijie Zhao, Xintao Hu, Yixuan Yuan, Gang Li, Shu Zhang, Xin Zhang, Xi Jiang, Tuo Zhang, Dinggang Shen, Quanzheng Li, Wei Liu, Xiang Li, Dajiang Zhu, Tianming Liu
GPT-4V represents a breakthrough in artificial general intelligence (AGI) for computer vision, with applications in the biomedical domain.
no code implementations • 7 Nov 2023 • Jason Holmes, Rui Peng, Yiwei Li, Jinyu Hu, Zhengliang Liu, Zihao Wu, Huan Zhao, Xi Jiang, Wei Liu, Hong Wei, Jie Zou, Tianming Liu, Yi Shao
IMPORTANCE The response effectiveness of different large language models (LLMs) and various individuals, including medical students, graduate students, and practicing physicians, in pediatric ophthalmology consultations, has not been clearly established yet.
no code implementations • 7 Nov 2023 • Jason Holmes, Shuyuan Ye, Yiwei Li, Shi-Nan Wu, Zhengliang Liu, Zihao Wu, Jinyu Hu, Huan Zhao, Xi Jiang, Wei Liu, Hong Wei, Jie Zou, Tianming Liu, Yi Shao
Methods: A 100-item ophthalmology single-choice test was administered to three different LLMs (GPT-3. 5, GPT-4, and PaLM2) and three different professional levels (medical undergraduates, medical masters, and attending physicians), respectively.
no code implementations • 5 Nov 2023 • Xinyu Gong, Jason Holmes, Yiwei Li, Zhengliang Liu, Qi Gan, Zihao Wu, Jianli Zhang, Yusong Zou, Yuxi Teng, Tian Jiang, Hongtu Zhu, Wei Liu, Tianming Liu, Yajun Yan
Recent advances in Large Language Models (LLMs) have presented new opportunities for integrating Artificial General Intelligence (AGI) into biological research and education.
no code implementations • 30 Oct 2023 • Zhengliang Liu, Yiwei Li, Qian Cao, Junwen Chen, Tianze Yang, Zihao Wu, John Hale, John Gibbs, Khaled Rasheed, Ninghao Liu, Gengchen Mai, Tianming Liu
Recent advances in artificial general intelligence (AGI), particularly large language models and creative image generation systems have demonstrated impressive capabilities on diverse tasks spanning the arts and humanities.
no code implementations • 8 Oct 2023 • Tianyang Zhong, Wei Zhao, Yutong Zhang, Yi Pan, Peixin Dong, Zuowei Jiang, Xiaoyan Kui, Youlan Shang, Li Yang, Yaonai Wei, Longtao Yang, Hao Chen, Huan Zhao, Yuxiao Liu, Ning Zhu, Yiwei Li, Yisong Wang, Jiaqi Yao, Jiaqi Wang, Ying Zeng, Lei He, Chao Zheng, Zhixue Zhang, Ming Li, Zhengliang Liu, Haixing Dai, Zihao Wu, Lu Zhang, Shu Zhang, Xiaoyan Cai, Xintao Hu, Shijie Zhao, Xi Jiang, Xin Zhang, Xiang Li, Dajiang Zhu, Lei Guo, Dinggang Shen, Junwei Han, Tianming Liu, Jun Liu, Tuo Zhang
Radiology report generation, as a key step in medical image analysis, is critical to the quantitative analysis of clinically informed decision-making levels.
no code implementations • 5 Oct 2023 • Jason Holmes, Lian Zhang, Yuzhen Ding, Hongying Feng, Zhengliang Liu, Tianming Liu, William W. Wong, Sujay A. Vora, Jonathan B. Ashman, Wei Liu
Conclusions: Given the accuracy of GPT-4 in re-labeling structure names of both target volumes and normal tissues as presented in this work, LLMs are poised to be the preferred method for standardizing structure names in radiation oncology, especially considering the rapid advancements in LLM capabilities that are likely to continue.
no code implementations • 27 Sep 2023 • Yucheng Shi, Shaochen Xu, Tianze Yang, Zhengliang Liu, Tianming Liu, Quanzheng Li, Xiang Li, Ninghao Liu
Focusing on medical QA, we evaluate the impact of different retrieval models and the number of facts on LLM performance using the MedQA-SMILE dataset.
1 code implementation • 24 Sep 2023 • Sekeun Kim, Kyungsang Kim, Jiang Hu, Cheng Chen, Zhiliang Lyu, Ren Hui, Sunghwan Kim, Zhengliang Liu, Aoxiao Zhong, Xiang Li, Tianming Liu, Quanzheng Li
The Segmentation Anything Model (SAM) has gained significant attention for its robust generalization capabilities across diverse downstream tasks.
no code implementations • 19 Sep 2023 • Chenhao Tang, Zhengliang Liu, Chong Ma, Zihao Wu, Yiwei Li, Wei Liu, Dajiang Zhu, Quanzheng Li, Xiang Li, Tianming Liu, Lei Fan
In this study, we investigate a privacy policy text analysis framework PolicyGPT based on the LLM.
no code implementations • 18 Sep 2023 • Zhengliang Liu, Peilong Wang, Yiwei Li, Jason Holmes, Peng Shu, Lian Zhang, Chenbin Liu, Ninghao Liu, Dajiang Zhu, Xiang Li, Quanzheng Li, Samir H. Patel, Terence T. Sio, Tianming Liu, Wei Liu
This paper presents RadOnc-GPT, a large language model specialized for radiation oncology through advanced tuning methods.
1 code implementation • 16 Sep 2023 • Cheng Chen, Juzheng Miao, Dufan Wu, Zhiling Yan, Sekeun Kim, Jiang Hu, Aoxiao Zhong, Zhengliang Liu, Lichao Sun, Xiang Li, Tianming Liu, Pheng-Ann Heng, Quanzheng Li
The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks.
no code implementations • 14 Sep 2023 • Fei Dou, Jin Ye, Geng Yuan, Qin Lu, Wei Niu, Haijian Sun, Le Guan, Guoyu Lu, Gengchen Mai, Ninghao Liu, Jin Lu, Zhengliang Liu, Zihao Wu, Chenjiao Tan, Shaochen Xu, Xianqiao Wang, Guoming Li, Lilong Chai, Sheng Li, Jin Sun, Hongyue Sun, Yunli Shao, Changying Li, Tianming Liu, WenZhan Song
Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas.
no code implementations • 10 Sep 2023 • Yaonai Wei, Tuo Zhang, Han Zhang, Tianyang Zhong, Lin Zhao, Zhengliang Liu, Chong Ma, Songyao Zhang, Muheng Shang, Lei Du, Xiao Li, Tianming Liu, Junwei Han
In this study, we propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map open-ended semantic queries to brain activation maps in data-scarce and complex query environments.
no code implementations • 29 Aug 2023 • Zhengliang Liu, Yiwei Li, Peng Shu, Aoxiao Zhong, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma, Jie Luo, Cheng Chen, Sekeun Kim, Jiang Hu, Haixing Dai, Lin Zhao, Dajiang Zhu, Jun Liu, Wei Liu, Dinggang Shen, Tianming Liu, Quanzheng Li, Xiang Li
This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning.
1 code implementation • 25 Jul 2023 • Zhengliang Liu, Tianyang Zhong, Yiwei Li, Yutong Zhang, Yi Pan, Zihao Zhao, Peixin Dong, Chao Cao, Yuxiao Liu, Peng Shu, Yaonai Wei, Zihao Wu, Chong Ma, Jiaqi Wang, Sheng Wang, Mengyue Zhou, Zuowei Jiang, Chunlin Li, Jason Holmes, Shaochen Xu, Lu Zhang, Haixing Dai, Kai Zhang, Lin Zhao, Yuanhao Chen, Xu Liu, Peilong Wang, Pingkun Yan, Jun Liu, Bao Ge, Lichao Sun, Dajiang Zhu, Xiang Li, Wei Liu, Xiaoyan Cai, Xintao Hu, Xi Jiang, Shu Zhang, Xin Zhang, Tuo Zhang, Shijie Zhao, Quanzheng Li, Hongtu Zhu, Dinggang Shen, Tianming Liu
The rise of large language models (LLMs) has marked a pivotal shift in the field of natural language processing (NLP).
no code implementations • 21 Jul 2023 • Zihan Guan, Zihao Wu, Zhengliang Liu, Dufan Wu, Hui Ren, Quanzheng Li, Xiang Li, Ninghao Liu
Participant recruitment based on unstructured medical texts such as clinical notes and radiology reports has been a challenging yet important task for the cohort establishment in clinical research.
no code implementations • 19 Jul 2023 • Zhengliang Liu, Zihao Wu, Mengxuan Hu, Bokai Zhao, Lin Zhao, Tianyi Zhang, Haixing Dai, Xianyan Chen, Ye Shen, Sheng Li, Brian Murray, Tianming Liu, Andrea Sikora
In this study, we introduce PharmacyGPT, a novel framework to assess the capabilities of large language models (LLMs) such as ChatGPT and GPT-4 in emulating the role of clinical pharmacists.
no code implementations • 10 Jul 2023 • Haixing Dai, Lu Zhang, Lin Zhao, Zihao Wu, Zhengliang Liu, David Liu, Xiaowei Yu, Yanjun Lyu, Changying Li, Ninghao Liu, Tianming Liu, Dajiang Zhu
With the popularity of deep neural networks (DNNs), model interpretability is becoming a critical concern.
1 code implementation • 5 Jul 2023 • Hongmin Cai, Xiaoke Huang, Zhengliang Liu, Wenxiong Liao, Haixing Dai, Zihao Wu, Dajiang Zhu, Hui Ren, Quanzheng Li, Tianming Liu, Xiang Li
As AD impairs the patient's language understanding and expression ability, the speech of AD patients can serve as an indicator of this disease.
1 code implementation • 3 Jul 2023 • Haixing Dai, Chong Ma, Zhiling Yan, Zhengliang Liu, Enze Shi, Yiwei Li, Peng Shu, Xiaozheng Wei, Lin Zhao, Zihao Wu, Fang Zeng, Dajiang Zhu, Wei Liu, Quanzheng Li, Lichao Sun, Shu Zhang Tianming Liu, Xiang Li
Starting with an initial point prompt, SAM produces an initial mask, which is then fed into our proposed SAMAug to generate augmented point prompts.
no code implementations • 3 Jul 2023 • Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi Yang, Yiheng Liu, Songyao Zhang, Enze Shi, Yi Pan, Tuo Zhang, Dajiang Zhu, Xiang Li, Xi Jiang, Bao Ge, Yixuan Yuan, Dinggang Shen, Tianming Liu, Shu Zhang
This review aims to summarize the methods employed in the computer vision domain for large vision models and visual prompt engineering, exploring the latest advancements in visual prompt engineering.
no code implementations • 20 Jun 2023 • Lian Zhang, Zhengliang Liu, Lu Zhang, Zihao Wu, Xiaowei Yu, Jason Holmes, Hongying Feng, Haixing Dai, Xiang Li, Quanzheng Li, Dajiang Zhu, Tianming Liu, Wei Liu
Given that SAM, a model pre-trained purely on natural images, can handle the delineation of OARs from medical images with clinically acceptable accuracy, these results highlight SAM's robust generalization capabilities with consistent accuracy in automatic segmentation for radiotherapy.
no code implementations • 20 Jun 2023 • Saed Rezayi, Zhengliang Liu, Zihao Wu, Chandra Dhakal, Bao Ge, Haixing Dai, Gengchen Mai, Ninghao Liu, Chen Zhen, Tianming Liu, Sheng Li
ChatGPT has shown to be a strong baseline in many NLP tasks, and we believe it has the potential to improve our model in the task of semantic matching and enhance our model's understanding of food-related concepts and relationships.
no code implementations • 16 Jun 2023 • Haixing Dai, Yiwei Li, Zhengliang Liu, Lin Zhao, Zihao Wu, Suhang Song, Ye Shen, Dajiang Zhu, Xiang Li, Sheng Li, Xiaobai Yao, Lu Shi, Quanzheng Li, Zhuo Chen, Donglan Zhang, Gengchen Mai, Tianming Liu
In this pioneering study, inspired by AutoGPT, the state-of-the-art open-source application based on the GPT-4 large language model, we develop a novel tool called AD-AutoGPT which can conduct data collection, processing, and analysis about complex health narratives of Alzheimer's Disease in an autonomous manner via users' textual prompts.
no code implementations • 14 Jun 2023 • Zhengliang Liu, Aoxiao Zhong, Yiwei Li, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma, Peng Shu, Cheng Chen, Sekeun Kim, Haixing Dai, Lin Zhao, Lichao Sun, Dajiang Zhu, Jun Liu, Wei Liu, Dinggang Shen, Xiang Li, Quanzheng Li, Tianming Liu
We introduce Radiology-GPT, a large language model for radiology.
no code implementations • 8 Jun 2023 • Xiang Li, Lu Zhang, Zihao Wu, Zhengliang Liu, Lin Zhao, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen
In this review, we explore the potential applications of Artificial General Intelligence (AGI) models in healthcare, focusing on foundational Large Language Models (LLMs), Large Vision Models, and Large Multimodal Models.
1 code implementation • 26 May 2023 • Kai Zhang, Rong Zhou, Eashan Adhikarla, Zhiling Yan, Yixin Liu, Jun Yu, Zhengliang Liu, Xun Chen, Brian D. Davison, Hui Ren, Jing Huang, Chen Chen, Yuyin Zhou, Sunyang Fu, Wei Liu, Tianming Liu, Xiang Li, Yong Chen, Lifang He, James Zou, Quanzheng Li, Hongfang Liu, Lichao Sun
Traditional biomedical artificial intelligence (AI) models, designed for specific tasks or modalities, often exhibit limited flexibility in real-world deployment and struggle to utilize holistic information.
Ranked #1 on Text Summarization on MeQSum
no code implementations • 28 Apr 2023 • Jiaqi Wang, Enze Shi, Sigang Yu, Zihao Wu, Chong Ma, Haixing Dai, Qiushi Yang, Yanqing Kang, Jinru Wu, Huawen Hu, Chenxi Yue, Haiyang Zhang, Yiheng Liu, Yi Pan, Zhengliang Liu, Lichao Sun, Xiang Li, Bao Ge, Xi Jiang, Dajiang Zhu, Yixuan Yuan, Dinggang Shen, Tianming Liu, Shu Zhang
Prompt engineering is a critical technique in the field of natural language processing that involves designing and optimizing the prompts used to input information into models, aiming to enhance their performance on specific tasks.
no code implementations • 23 Apr 2023 • Wenxiong Liao, Zhengliang Liu, Haixing Dai, Shaochen Xu, Zihao Wu, Yiyang Zhang, Xiaoke Huang, Dajiang Zhu, Hongmin Cai, Tianming Liu, Xiang Li
We focus on analyzing the differences between medical texts written by human experts and generated by ChatGPT, and designing machine learning workflows to effectively detect and differentiate medical texts generated by ChatGPT.
no code implementations • 21 Apr 2023 • Tianyang Zhong, Yaonai Wei, Li Yang, Zihao Wu, Zhengliang Liu, Xiaozheng Wei, Wenjun Li, Junjie Yao, Chong Ma, Xiang Li, Dajiang Zhu, Xi Jiang, Junwei Han, Dinggang Shen, Tianming Liu, Tuo Zhang
The proposed method uses the strengths of LLMs' understanding and logical reasoning to correct the incomplete logical facts for optimizing the performance of perceptual module, by summarizing and reorganizing reasoning rules represented in natural language format.
no code implementations • 21 Apr 2023 • Yuzhen Ding, Hongying Feng, Yunze Yang, Jason Holmes, Zhengliang Liu, David Liu, William W. Wong, Nathan Y. Yu, Terence T. Sio, Steven E. Schild, Baoxin Li, Wei Liu
Conclusion: A patient-specific vision-transformer-based network was developed and shown to be accurate and efficient to reconstruct 3D CT images from kV images.
no code implementations • 18 Apr 2023 • Zihao Wu, Lu Zhang, Chao Cao, Xiaowei Yu, Haixing Dai, Chong Ma, Zhengliang Liu, Lin Zhao, Gang Li, Wei Liu, Quanzheng Li, Dinggang Shen, Xiang Li, Dajiang Zhu, Tianming Liu
To this end, in this study, we evaluate the performance of ChatGPT/GPT-4 on a radiology NLI task and compare it to other models fine-tuned specifically on task-related data samples.
2 code implementations • 17 Apr 2023 • Chong Ma, Zihao Wu, Jiaqi Wang, Shaochen Xu, Yaonai Wei, Fang Zeng, Zhengliang Liu, Xi Jiang, Lei Guo, Xiaoyan Cai, Shu Zhang, Tuo Zhang, Dajiang Zhu, Dinggang Shen, Tianming Liu, Xiang Li
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians, and it is typically written by radiologists based on the 'Findings' section.
no code implementations • 4 Apr 2023 • Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Lin Zhao, Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen, Tianming Liu, Bao Ge
This paper presents a comprehensive survey of ChatGPT-related (GPT-3. 5 and GPT-4) research, state-of-the-art large language models (LLM) from the GPT series, and their prospective applications across diverse domains.
no code implementations • 1 Apr 2023 • Jason Holmes, Zhengliang Liu, Lian Zhang, Yuzhen Ding, Terence T. Sio, Lisa A. McGee, Jonathan B. Ashman, Xiang Li, Tianming Liu, Jiajian Shen, Wei Liu
We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions.
no code implementations • 28 Mar 2023 • Lin Zhao, Lu Zhang, Zihao Wu, Yuzhong Chen, Haixing Dai, Xiaowei Yu, Zhengliang Liu, Tuo Zhang, Xintao Hu, Xi Jiang, Xiang Li, Dajiang Zhu, Dinggang Shen, Tianming Liu
Artificial General Intelligence (AGI) has been a long-standing goal of humanity, with the aim of creating machines capable of performing any intellectual task that humans can do.
1 code implementation • 20 Mar 2023 • Zhengliang Liu, Yue Huang, Xiaowei Yu, Lu Zhang, Zihao Wu, Chao Cao, Haixing Dai, Lin Zhao, Yiwei Li, Peng Shu, Fang Zeng, Lichao Sun, Wei Liu, Dinggang Shen, Quanzheng Li, Tianming Liu, Dajiang Zhu, Xiang Li
The digitization of healthcare has facilitated the sharing and re-using of medical data but has also raised concerns about confidentiality and privacy.
no code implementations • 25 Feb 2023 • Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu, Hongmin Cai, Lichao Sun, Quanzheng Li, Dinggang Shen, Tianming Liu, Xiang Li
Text data augmentation is an effective strategy for overcoming the challenge of limited sample sizes in many natural language processing (NLP) tasks.
no code implementations • 21 Feb 2023 • Wenxiong Liao, Zhengliang Liu, Haixing Dai, Zihao Wu, Yiyang Zhang, Xiaoke Huang, Yuzhong Chen, Xi Jiang, Wei Liu, Dajiang Zhu, Tianming Liu, Sheng Li, Xiang Li, Hongmin Cai
The main challenge of FSL is the difficulty of training robust models on small amounts of samples, which frequently leads to overfitting.
no code implementations • 27 Jan 2023 • Zhengliang Liu, Xinyu He, Lei Liu, Tianming Liu, Xiaoming Zhai
However, the ideal type of data to contextualize pre-trained language model and improve the performance in automatically scoring student written responses remains unclear.
no code implementations • 5 Nov 2022 • Hongmin Cai, Wenxiong Liao, Zhengliang Liu, Yiyang Zhang, Xiaoke Huang, Siqi Ding, Hui Ren, Zihao Wu, Haixing Dai, Sheng Li, Lingfei Wu, Ninghao Liu, Quanzheng Li, Tianming Liu, Xiang Li
In this framework, we apply distant-supervision on cross-domain knowledge graph adaptation.
no code implementations • 25 May 2022 • Chong Ma, Lin Zhao, Yuzhong Chen, Lu Zhang, Zhenxiang Xiao, Haixing Dai, David Liu, Zihao Wu, Zhengliang Liu, Sheng Wang, Jiaxing Gao, Changhe Li, Xi Jiang, Tuo Zhang, Qian Wang, Dinggang Shen, Dajiang Zhu, Tianming Liu
To address this problem, we propose to infuse human experts' intelligence and domain knowledge into the training of deep neural networks.
1 code implementation • 19 May 2022 • Yiheng Liu, Enjie Ge, Mengshen He, Zhengliang Liu, Shijie Zhao, Xintao Hu, Dajiang Zhu, Tianming Liu, Bao Ge
More importantly, our proposed hybrid attention modules (SA and CA) do not enforce assumptions of linearity and independence as previous methods, and thus provide a novel approach to better understanding dynamic functional brain networks.