no code implementations • ACL 2022 • Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, Jie Tang
Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training.
1 code implementation • 17 Jan 2025 • Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, Jie Tang
However, evaluating the function calling abilities of LLMs in real-world scenarios remains under-explored due to the complexity of data collection and evaluation.
no code implementations • 8 Dec 2024 • Zhenyu Hou, Pengfan Du, Yilin Niu, Zhengxiao Du, Aohan Zeng, Xiao Liu, Minlie Huang, Hongning Wang, Jie Tang, Yuxiao Dong
And larger reward models offer modest gains in policy training.
1 code implementation • 3 Dec 2024 • Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong, Jie Tang
We continue pre-training from the pre-trained text language model GLM-4-9B with a combination of unsupervised speech data, interleaved speech-text data, and supervised speech-text data, scaling up to 1 trillion tokens, achieving state-of-the-art performance in both speech language modeling and spoken question answering.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+6
1 code implementation • 26 Nov 2024 • Aohan Zeng, Zhengxiao Du, Mingdao Liu, Lei Zhang, Shengmin Jiang, Yuxiao Dong, Jie Tang
Starting from a pre-trained language model and scaling our pre-training to 1 trillion tokens (with 600B synthetic interleaved speech-text data), we achieve state-of-the-art performance in speech language modeling and spoken question answering, improving performance on spoken questions tasks from the previous SOTA of 13% (Moshi) to 31%.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
no code implementations • 10 Sep 2024 • Zhihuan Jiang, Zhen Yang, Jinhao Chen, Zhengxiao Du, Weihan Wang, Bin Xu, Jie Tang
To address this gap, we meticulously construct a comprehensive benchmark, named VisScience, which is utilized to assess the multi-modal scientific reasoning across the three disciplines of mathematics, physics, and chemistry.
no code implementations • 10 Sep 2024 • Zhen Yang, Jinhao Chen, Zhengxiao Du, Wenmeng Yu, Weihan Wang, Wenyi Hong, Zhihuan Jiang, Bin Xu, Jie Tang
Large language models (LLMs) have demonstrated significant capabilities in mathematical reasoning, particularly with text-based mathematical problems.
1 code implementation • 12 Aug 2024 • Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng, Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu, Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, Jie Tang
Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents.
7 code implementations • 18 Jun 2024 • Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, Zihan Wang
We introduce ChatGLM, an evolving family of large language models that we have been developing over time.
3 code implementations • 3 Apr 2024 • Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng, Zhengxiao Du, Wenyi Zhao, Jie Tang, Yuxiao Dong
Large language models (LLMs) have shown excellent mastering of human language, but still struggle in real-world applications that require mathematical problem-solving.
no code implementations • 1 Apr 2024 • Zhenyu Hou, Yilin Niu, Zhengxiao Du, Xiaohan Zhang, Xiao Liu, Aohan Zeng, Qinkai Zheng, Minlie Huang, Hongning Wang, Jie Tang, Yuxiao Dong
The work presents our practices of aligning LLMs with human preferences, offering insights into the challenges and solutions in RLHF implementations.
no code implementations • 23 Mar 2024 • Zhengxiao Du, Aohan Zeng, Yuxiao Dong, Jie Tang
Recent studies have put into question the belief that emergent abilities in language models are exclusive to large models.
1 code implementation • 15 Jan 2024 • Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue, Yuxiao Dong, Jie Tang
To bridge these gaps, we introduce SciInstruct, a suite of scientific instructions for training scientific language models capable of college-level scientific reasoning.
3 code implementations • 28 Aug 2023 • Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, Juanzi Li
In this paper, we introduce LongBench, the first bilingual, multi-task benchmark for long context understanding, enabling a more rigorous evaluation of long context understanding.
1 code implementation • 7 Aug 2023 • Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, Jie Tang
We present AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
2 code implementations • 13 Jun 2023 • Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong, Jie Tang
We present WebGLM, a web-enhanced question-answering system based on the General Language Model (GLM).
9 code implementations • 5 Oct 2022 • Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, WenGuang Chen, Peng Zhang, Yuxiao Dong, Jie Tang
We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters.
Ranked #1 on
Language Modelling
on CLUE (OCNLI_50K)
5 code implementations • 14 Oct 2021 • Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, Jie Tang
Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training.
9 code implementations • 18 Mar 2021 • Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, Jie Tang
Prompting a pretrained language model with natural language patterns has been proved effective for natural language understanding (NLU).
8 code implementations • ACL 2022 • Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, Jie Tang
On a wide range of tasks across NLU, conditional and unconditional generation, GLM outperforms BERT, T5, and GPT given the same model sizes and data, and achieves the best performance from a single pretrained model with 1. 25x parameters of BERT Large , demonstrating its generalizability to different downstream tasks.
Ranked #4 on
Language Modelling
on WikiText-103
(using extra training data)
1 code implementation • 19 Nov 2019 • Himank Yadav, Zhengxiao Du, Thorsten Joachims
is an abundant and attractive source of data for learning to rank, it can produce unfair ranking policies for both exogenous and endogenous reasons.
1 code implementation • 13 Jun 2019 • Zhengxiao Du, Chang Zhou, Ming Ding, Hongxia Yang, Jie Tang
Inferring new facts from existing knowledge graphs (KG) with explainable reasoning processes is a significant problem and has received much attention recently.
1 code implementation • 2 Jun 2019 • Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, Jie Tang
Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks.