no code implementations • 27 Mar 2024 • Ruikai Cui, Weizhe Liu, Weixuan Sun, Senbo Wang, Taizhang Shang, Yang Li, Xibin Song, Han Yan, Zhennan Wu, Shenzhou Chen, Hongdong Li, Pan Ji
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
no code implementations • 24 Mar 2024 • Han Yan, Yang Li, Zhennan Wu, Shenzhou Chen, Weixuan Sun, Taizhang Shang, Weizhe Liu, Tian Chen, Xiaqiang Dai, Chao Ma, Hongdong Li, Pan Ji
We present Frankenstein, a diffusion-based framework that can generate semantic-compositional 3D scenes in a single pass.
1 code implementation • 30 Jan 2024 • Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan Sun, Senbo Wang, Ruikai Cui, Weizhe Liu, Hiroyuki Sato, Hongdong Li, Pan Ji
A variational auto-encoder is employed to compress the tri-planes into the latent tri-plane space, on which the denoising diffusion process is performed.
1 code implementation • 23 Mar 2022 • Zhennan Wu, Roni Khardon
Stochastic planning can be reduced to probabilistic inference in large discrete graphical models, but hardness of inference requires approximation schemes to be used.
1 code implementation • 15 Oct 2021 • Yinpeng Dong, Qi-An Fu, Xiao Yang, Wenzhao Xiang, Tianyu Pang, Hang Su, Jun Zhu, Jiayu Tang, Yuefeng Chen, Xiaofeng Mao, Yuan He, Hui Xue, Chao Li, Ye Liu, Qilong Zhang, Lianli Gao, Yunrui Yu, Xitong Gao, Zhe Zhao, Daquan Lin, Jiadong Lin, Chuanbiao Song, ZiHao Wang, Zhennan Wu, Yang Guo, Jiequan Cui, Xiaogang Xu, Pengguang Chen
Due to the vulnerability of deep neural networks (DNNs) to adversarial examples, a large number of defense techniques have been proposed to alleviate this problem in recent years.