Search Results for author: Zhenxing Niu

Found 25 papers, 12 papers with code

Towards Aligned Data Removal via Twin Machine Unlearning

no code implementations21 Aug 2024 Yuyao Sun, Zhenxing Niu, Gang Hua, Rong Jin

Nonetheless, the authentic objective of machine unlearning is to align the unlearned model with the gold model, i. e., achieving the same classification accuracy as the gold model.

Machine Unlearning

Interpreting and Mitigating Hallucination in MLLMs through Multi-agent Debate

no code implementations30 Jul 2024 Zheng Lin, Zhenxing Niu, Zhibin Wang, Yinghui Xu

MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination.

Hallucination

Towards Unified Robustness Against Both Backdoor and Adversarial Attacks

1 code implementation28 May 2024 Zhenxing Niu, Yuyao Sun, Qiguang Miao, Rong Jin, Gang Hua

Specifically, our PUD has a progressive model purification scheme to jointly erase backdoors and enhance the model's adversarial robustness.

Adversarial Defense Adversarial Robustness +2

Jailbreaking Attack against Multimodal Large Language Model

2 code implementations4 Feb 2024 Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua, Rong Jin

This paper focuses on jailbreaking attacks against multi-modal large language models (MLLMs), seeking to elicit MLLMs to generate objectionable responses to harmful user queries.

Language Modelling Large Language Model +1

Unidirectional Video Denoising by Mimicking Backward Recurrent Modules with Look-ahead Forward Ones

1 code implementation12 Apr 2022 Junyi Li, Xiaohe Wu, Zhenxing Niu, WangMeng Zuo

However, BiRNN is intrinsically offline because it uses backward recurrent modules to propagate from the last to current frames, which causes high latency and large memory consumption.

Denoising Video Denoising +1

Semantic-shape Adaptive Feature Modulation for Semantic Image Synthesis

1 code implementation CVPR 2022 Zhengyao Lv, Xiaoming Li, Zhenxing Niu, Bing Cao, WangMeng Zuo

Obviously, a fine-grained part-level semantic layout will benefit object details generation, and it can be roughly inferred from an object's shape.

Image Generation Object

Progressive Backdoor Erasing via connecting Backdoor and Adversarial Attacks

no code implementations CVPR 2023 Bingxu Mu, Zhenxing Niu, Le Wang, Xue Wang, Rong Jin, Gang Hua

Deep neural networks (DNNs) are known to be vulnerable to both backdoor attacks as well as adversarial attacks.

backdoor defense

Boosting Weakly Supervised Object Detection via Learning Bounding Box Adjusters

1 code implementation ICCV 2021 Bowen Dong, Zitong Huang, Yuelin Guo, Qilong Wang, Zhenxing Niu, WangMeng Zuo

In this paper, we defend the problem setting for improving localization performance by leveraging the bounding box regression knowledge from a well-annotated auxiliary dataset.

Object object-detection +3

Unlimited Neighborhood Interaction for Heterogeneous Trajectory Prediction

1 code implementation ICCV 2021 Fang Zheng, Le Wang, Sanping Zhou, Wei Tang, Zhenxing Niu, Nanning Zheng, Gang Hua

Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously, which is adaptive to any number of agents and any range of interaction area.

Graph Attention Trajectory Prediction

SGCN: Sparse Graph Convolution Network for Pedestrian Trajectory Prediction

no code implementations CVPR 2021 Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Mo Zhou, Zhenxing Niu, Gang Hua

Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.

Pedestrian Trajectory Prediction Trajectory Prediction

Video Imprint

no code implementations7 Jun 2021 Zhanning Gao, Le Wang, Nebojsa Jojic, Zhenxing Niu, Nanning Zheng, Gang Hua

In the proposed framework, a dedicated feature alignment module is incorporated for redundancy removal across frames to produce the tensor representation, i. e., the video imprint.

Language Modelling Retrieval

Adversarial Attack and Defense in Deep Ranking

1 code implementation7 Jun 2021 Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Nanning Zheng, Gang Hua

In this paper, we propose two attacks against deep ranking systems, i. e., Candidate Attack and Query Attack, that can raise or lower the rank of chosen candidates by adversarial perturbations.

Adversarial Attack Adversarial Robustness

Image Inpainting with Edge-guided Learnable Bidirectional Attention Maps

1 code implementation25 Apr 2021 Dongsheng Wang, Chaohao Xie, Shaohui Liu, Zhenxing Niu, WangMeng Zuo

In this paper, we present an edge-guided learnable bidirectional attention map (Edge-LBAM) for improving image inpainting of irregular holes with several distinct merits.

Image Inpainting valid

SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction

4 code implementations4 Apr 2021 Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Mo Zhou, Zhenxing Niu, Gang Hua

Meanwhile, we use a sparse directed temporal graph to model the motion tendency, thus to facilitate the prediction based on the observed direction.

Pedestrian Trajectory Prediction Trajectory Prediction

Practical Relative Order Attack in Deep Ranking

2 code implementations ICCV 2021 Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Yinghui Xu, Nanning Zheng, Gang Hua

In this paper, we formulate a new adversarial attack against deep ranking systems, i. e., the Order Attack, which covertly alters the relative order among a selected set of candidates according to an attacker-specified permutation, with limited interference to other unrelated candidates.

Adversarial Attack

Practical Order Attack in Deep Ranking

no code implementations1 Jan 2021 Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Xu Yinghui, Nanning Zheng, Gang Hua

The objective of this paper is to formalize and practically implement a new adversarial attack against deep ranking systems, i. e., the Order Attack, which covertly alters the relative order of a selected set of candidates according to a permutation vector predefined by the attacker, with only limited interference to other unrelated candidates.

Adversarial Attack Image Retrieval

Adversarial Ranking Attack and Defense

3 code implementations ECCV 2020 Mo Zhou, Zhenxing Niu, Le Wang, Qilin Zhang, Gang Hua

In this paper, we propose two attacks against deep ranking systems, i. e., Candidate Attack and Query Attack, that can raise or lower the rank of chosen candidates by adversarial perturbations.

Adversarial Attack Image Retrieval

Ladder Loss for Coherent Visual-Semantic Embedding

2 code implementations18 Nov 2019 Mo Zhou, Zhenxing Niu, Le Wang, Zhanning Gao, Qilin Zhang, Gang Hua

For visual-semantic embedding, the existing methods normally treat the relevance between queries and candidates in a bipolar way -- relevant or irrelevant, and all "irrelevant" candidates are uniformly pushed away from the query by an equal margin in the embedding space, regardless of their various proximity to the query.

Retrieval

Attention-based Temporal Weighted Convolutional Neural Network for Action Recognition

no code implementations19 Mar 2018 Jinliang Zang, Le Wang, Ziyi Liu, Qilin Zhang, Zhenxing Niu, Gang Hua, Nanning Zheng

Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs).

Action Recognition Temporal Action Localization

Hierarchical Multimodal LSTM for Dense Visual-Semantic Embedding

no code implementations ICCV 2017 Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, Gang Hua

We address the problem of dense visual-semantic embedding that maps not only full sentences and whole images but also phrases within sentences and salient regions within images into a multimodal embedding space.

Sentence

Ordinal Regression With Multiple Output CNN for Age Estimation

no code implementations CVPR 2016 Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, Gang Hua

To address the non-stationary property of aging patterns, age estimation can be cast as an ordinal regression problem.

Age Estimation Binary Classification +3

Semi-supervised Relational Topic Model for Weakly Annotated Image Recognition in Social Media

no code implementations CVPR 2014 Zhenxing Niu, Gang Hua, Xinbo Gao, Qi Tian

In such way, we can efficiently leverage the loosely related tags, and build an intermediate level representation for a collection of weakly annotated images.

Cannot find the paper you are looking for? You can Submit a new open access paper.