Search Results for author: Zhenyu Yang

Found 26 papers, 10 papers with code

Kwai-STaR: Transform LLMs into State-Transition Reasoners

no code implementations7 Nov 2024 Xingyu Lu, Yuhang Hu, Changyi Liu, Tianke Zhang, Zhenyu Yang, Zhixiang Ding, Shengsheng Qian, Meng Du, Ruiwen Kang, Kaiyu Tang, Fan Yang, Tingting Gao, Di Zhang, Hai-Tao Zheng, Bin Wen

In this work, we define mathematical problem-solving as a process of transiting from an initial unsolved state to the final resolved state, and propose Kwai-STaR framework, which transforms LLMs into State-Transition Reasoners to improve their intuitive reasoning capabilities.

GSM8K Mathematical Problem-Solving +1

Semantic Editing Increment Benefits Zero-Shot Composed Image Retrieval

1 code implementation ACM MM 2024 Zhenyu Yang, Shengsheng Qian, Dizhan Xue, JiaHong Wu, Fan Yang, WeiMing Dong, Changsheng Xu

To address this limitation, this paper proposes a training-free method called Semantic Editing Increment for ZS-CIR (SEIZE) to retrieve the target image based on the query image and text without training.

Image Retrieval Image to text +2

FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality

no code implementations25 Oct 2024 Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, Kwan-Yee K. Wong

Our key contributions include a dynamic feature reuse strategy that preserves both feature distinction and temporal continuity, and CFG-Cache which optimizes the reuse of conditional and unconditional outputs to further enhance inference speed without compromising video quality.

Video Generation

Spherical Analysis of Learning Nonlinear Functionals

no code implementations1 Oct 2024 Zhenyu Yang, Shuo Huang, Han Feng, Ding-Xuan Zhou

It utilizes spherical harmonics to help us extract the latent finite-dimensional information of functions, which in turn facilitates in the next step of approximation analysis using fully connected neural networks.

Decoder

LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image

no code implementations14 Aug 2024 Fan Yang, Sicheng Zhao, Yanhao Zhang, Haoxiang Chen, Hui Chen, Wenbo Tang, Haonan Lu, Pengfei Xu, Zhenyu Yang, Jungong Han, Guiguang Ding

Recent advancements in autonomous driving, augmented reality, robotics, and embodied intelligence have necessitated 3D perception algorithms.

Autonomous Driving Logical Reasoning +2

The Llama 3 Herd of Models

2 code implementations31 Jul 2024 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer Van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, WenWen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, Zhiyu Ma

This paper presents a new set of foundation models, called Llama 3.

Ranked #3 on Multi-task Language Understanding on MMLU (using extra training data)

Language Modeling Language Modelling +3

LDRE: LLM-based Divergent Reasoning and Ensemble for Zero-Shot Composed Image Retrieval

1 code implementation SIGIR 2024 Zhenyu Yang, Dizhan Xue, Shengsheng Qian, WeiMing Dong, Changsheng Xu

To conduct ZS-CIR, the prevailing methods employ pre-trained image-to-text models to transform the query image and text into a single text, which is then projected into the common feature space by CLIP to retrieve the target image.

Image Retrieval Image to text +2

GlyphDraw2: Automatic Generation of Complex Glyph Posters with Diffusion Models and Large Language Models

1 code implementation2 Jul 2024 Jian Ma, Yonglin Deng, Chen Chen, Haonan Lu, Zhenyu Yang

Posters play a crucial role in marketing and advertising by enhancing visual communication and brand visibility, making significant contributions to industrial design.

Marketing

NARRepair: Non-Autoregressive Code Generation Model for Automatic Program Repair

no code implementations24 Jun 2024 Zhenyu Yang, Zhen Yang, Zhongxing Yu

To address the issue, we aim to apply the Non-Autoregressive(NAR) method to the APR task, which can output target code in a parallel manner to avoid huge inference delays.

Code Generation Program Repair

Skeleton Ground Truth Extraction: Methodology, Annotation Tool and Benchmarks

1 code implementation10 Oct 2023 Cong Yang, Bipin Indurkhya, John See, Bo Gao, Yan Ke, Zeyd Boukhers, Zhenyu Yang, Marcin Grzegorzek

However, most existing shape and image datasets suffer from the lack of skeleton GT and inconsistency of GT standards.

A Radiomics-Incorporated Deep Ensemble Learning Model for Multi-Parametric MRI-based Glioma Segmentation

no code implementations19 Mar 2023 Yang Chen, Zhenyu Yang, Jingtong Zhao, Justus Adamson, Yang Sheng, Fang-Fang Yin, Chunhao Wang

Four deep neural networks as sub-models following the U-Net architecture were trained for the segmenting of a region-of-interest (ROI): each sub-model utilizes the mp-MRI and 1 of the 4 PCs as a 5-channel input for a 2D execution.

Dimensionality Reduction Ensemble Learning +4

Shadow-Oriented Tracking Method for Multi-Target Tracking in Video-SAR

no code implementations29 Nov 2022 Xiaochuan Ni, Xiaoling Zhang, Xu Zhan, Zhenyu Yang, Jun Shi, Shunjun Wei, Tianjiao Zeng

To avoid missed tracking, a detection method based on deep learning is designed to thoroughly learn shadows' features, thus increasing the accurate estimation.

Quantifying U-Net Uncertainty in Multi-Parametric MRI-based Glioma Segmentation by Spherical Image Projection

no code implementations12 Oct 2022 Zhenyu Yang, Kyle Lafata, Eugene Vaios, Zongsheng Hu, Trey Mullikin, Fang-Fang Yin, Chunhao Wang

The SPU-Net model was compared with (1) the classic U-Net model with test-time augmentation (TTA) and (2) linear scaling-based U-Net (LSU-Net) segmentation models in terms of both segmentation accuracy (Dice coefficient, sensitivity, specificity, and accuracy) and segmentation uncertainty (uncertainty map and uncertainty score).

Segmentation Specificity

Complicated Background Suppression of ViSAR Image For Moving Target Shadow Detection

no code implementations21 Sep 2022 Zhenyu Yang, Xiaoling Zhang, Xu Zhan

The existing Video Synthetic Aperture Radar (ViSAR) moving target shadow detection methods based on deep neural networks mostly generate numerous false alarms and missing detections, because of the foreground-background indistinguishability.

Shadow Detection

Generating Coherent Narratives by Learning Dynamic and Discrete Entity States with a Contrastive Framework

1 code implementation8 Aug 2022 Jian Guan, Zhenyu Yang, Rongsheng Zhang, Zhipeng Hu, Minlie Huang

Despite advances in generating fluent texts, existing pretraining models tend to attach incoherent event sequences to involved entities when generating narratives such as stories and news.

Decoder Sentence

Shadow-Background-Noise 3D Spatial Decomposition Using Sparse Low-Rank Gaussian Properties for Video-SAR Moving Target Shadow Enhancement

no code implementations7 Jul 2022 Xiaowo Xu, Xiaoling Zhang, Tianwen Zhang, Zhenyu Yang, Jun Shi, Xu Zhan

Moving target shadows among video synthetic aperture radar (Video-SAR) images are always interfered by low scattering backgrounds and cluttered noises, causing poor detec-tion-tracking accuracy.

Shadow Detection

Curriculum-Based Self-Training Makes Better Few-Shot Learners for Data-to-Text Generation

1 code implementation6 Jun 2022 Pei Ke, Haozhe Ji, Zhenyu Yang, Yi Huang, Junlan Feng, Xiaoyan Zhu, Minlie Huang

Despite the success of text-to-text pre-trained models in various natural language generation (NLG) tasks, the generation performance is largely restricted by the number of labeled data in downstream tasks, particularly in data-to-text generation tasks.

Data-to-Text Generation Unsupervised Pre-training

LaMemo: Language Modeling with Look-Ahead Memory

1 code implementation NAACL 2022 Haozhe Ji, Rongsheng Zhang, Zhenyu Yang, Zhipeng Hu, Minlie Huang

Although Transformers with fully connected self-attentions are powerful to model long-term dependencies, they are struggling to scale to long texts with thousands of words in language modeling.

Language Modeling Language Modelling

A Neural Ordinary Differential Equation Model for Visualizing Deep Neural Network Behaviors in Multi-Parametric MRI based Glioma Segmentation

no code implementations1 Mar 2022 Zhenyu Yang, Zongsheng Hu, Hangjie Ji, Kyle Lafata, Scott Floyd, Fang-Fang Yin, Chunhao Wang

Methods: By hypothesizing that deep feature extraction can be modeled as a spatiotemporally continuous process, we designed a novel deep learning model, neural ODE, in which deep feature extraction was governed by an ODE without explicit expression.

Deep Learning Segmentation

A Radiomics-Boosted Deep-Learning Model for COVID-19 and Non-COVID-19 Pneumonia Classification Using Chest X-ray Image

no code implementations19 Jul 2021 Zongsheng Hu, Zhenyu Yang, Kyle J. Lafata, Fang-Fang Yin, Chunhao Wang

To develop a deep-learning model that integrates radiomics analysis for enhanced performance of COVID-19 and Non-COVID-19 pneumonia detection using chest X-ray image, two deep-learning models were trained based on a pre-trained VGG-16 architecture: in the 1st model, X-ray image was the sole input; in the 2nd model, X-ray image and 2 radiomic feature maps (RFM) selected by the saliency map analysis of the 1st model were stacked as the input.

Pneumonia Detection Specificity

Semantic-Enhanced Explainable Finetuning for Open-Domain Dialogues

no code implementations6 Jun 2021 Yinhe Zheng, Yida Wang, Pei Ke, Zhenyu Yang, Minlie Huang

This paper propose to combine pretrained language models with the modular dialogue paradigm for open-domain dialogue modeling.

Informativeness Language Modeling +2

The distance between the weights of the neural network is meaningful

no code implementations31 Jan 2021 Liqun Yang, Yijun Yang, Yao Wang, Zhenyu Yang, Wei Zeng

In the application of neural networks, we need to select a suitable model based on the problem complexity and the dataset scale.

A t-SNE Based Classification Approach to Compositional Microbiome Data

no code implementations frontiers 2020 Xueli Xu, Zhongming Xie, Zhenyu Yang, Dongfang Li, Ximing Xu

This study presented a t-SNE based classification approach for compositional microbiome data, which enabled us to build classifiers and classify new samples in the reduced dimensional space produced by t-SNE.

Classification Dimensionality Reduction +1

Cannot find the paper you are looking for? You can Submit a new open access paper.