Search Results for author: Zhishuai Zhang

Found 25 papers, 10 papers with code

Pedestrian Crossing Action Recognition and Trajectory Prediction with 3D Human Keypoints

no code implementations1 Jun 2023 Jiachen Li, Xinwei Shi, Feiyu Chen, Jonathan Stroud, Zhishuai Zhang, Tian Lan, Junhua Mao, Jeonhyung Kang, Khaled S. Refaat, Weilong Yang, Eugene Ie, CongCong Li

Accurate understanding and prediction of human behaviors are critical prerequisites for autonomous vehicles, especially in highly dynamic and interactive scenarios such as intersections in dense urban areas.

Action Recognition Autonomous Vehicles +3

Unsupervised Part Discovery via Feature Alignment

no code implementations1 Dec 2020 Mengqi Guo, Yutong Bai, Zhishuai Zhang, Adam Kortylewski, Alan Yuille

Specifically, given a training image, we find a set of similar images that show instances of the same object category in the same pose, through an affine alignment of their corresponding feature maps.

Object Recognition

STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction

no code implementations CVPR 2020 Zhishuai Zhang, Jiyang Gao, Junhua Mao, Yukai Liu, Dragomir Anguelov, Cong-Cong Li

For the Waymo Open Dataset, we achieve a bird-eyes-view (BEV) detection AP of 80. 73 and trajectory prediction average displacement error (ADE) of 33. 67cm for pedestrians, which establish the state-of-the-art for both tasks.

Autonomous Driving object-detection +3

Localizing Occluders with Compositional Convolutional Networks

no code implementations18 Nov 2019 Adam Kortylewski, Qing Liu, Huiyu Wang, Zhishuai Zhang, Alan Yuille

Our experimental results demonstrate that the proposed extensions increase the model's performance at localizing occluders as well as at classifying partially occluded objects.

Hyper-Pairing Network for Multi-Phase Pancreatic Ductal Adenocarcinoma Segmentation

no code implementations3 Sep 2019 Yuyin Zhou, Yingwei Li, Zhishuai Zhang, Yan Wang, Angtian Wang, Elliot Fishman, Alan Yuille, Seyoun Park

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with an overall five-year survival rate of 8%.

Multi-Scale Attentional Network for Multi-Focal Segmentation of Active Bleed after Pelvic Fractures

no code implementations23 Jun 2019 Yuyin Zhou, David Dreizin, Yingwei Li, Zhishuai Zhang, Yan Wang, Alan Yuille

Trauma is the worldwide leading cause of death and disability in those younger than 45 years, and pelvic fractures are a major source of morbidity and mortality.

Segmentation

Combining Compositional Models and Deep Networks For Robust Object Classification under Occlusion

no code implementations28 May 2019 Adam Kortylewski, Qing Liu, Huiyu Wang, Zhishuai Zhang, Alan Yuille

In this work, we combine DCNNs and compositional object models to retain the best of both approaches: a discriminative model that is robust to partial occlusion and mask attacks.

General Classification Image Classification

Learning Transferable Adversarial Examples via Ghost Networks

1 code implementation9 Dec 2018 Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, Alan Yuille

The critical principle of ghost networks is to apply feature-level perturbations to an existing model to potentially create a huge set of diverse models.

Adversarial Attack

Robust Face Detection via Learning Small Faces on Hard Images

1 code implementation28 Nov 2018 Zhishuai Zhang, Wei Shen, Siyuan Qiao, Yan Wang, Bo wang, Alan Yuille

In this paper, we propose that the robustness of a face detector against hard faces can be improved by learning small faces on hard images.

Face Detection

Adversarial Attacks and Defences Competition

1 code implementation31 Mar 2018 Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, Jian-Yu Wang, Zhishuai Zhang, Zhou Ren, Alan Yuille, Sangxia Huang, Yao Zhao, Yuzhe Zhao, Zhonglin Han, Junjiajia Long, Yerkebulan Berdibekov, Takuya Akiba, Seiya Tokui, Motoki Abe

To accelerate research on adversarial examples and robustness of machine learning classifiers, Google Brain organized a NIPS 2017 competition that encouraged researchers to develop new methods to generate adversarial examples as well as to develop new ways to defend against them.

BIG-bench Machine Learning

Improving Transferability of Adversarial Examples with Input Diversity

1 code implementation CVPR 2019 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jian-Yu Wang, Zhou Ren, Alan Yuille

We hope that our proposed attack strategy can serve as a strong benchmark baseline for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in the future.

Adversarial Attack Image Classification

Deep Co-Training for Semi-Supervised Image Recognition

1 code implementation ECCV 2018 Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo wang, Alan Yuille

We present Deep Co-Training, a deep learning based method inspired by the Co-Training framework.

Test

Single-Shot Object Detection with Enriched Semantics

no code implementations CVPR 2018 Zhishuai Zhang, Siyuan Qiao, Cihang Xie, Wei Shen, Bo wang, Alan L. Yuille

Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module.

object-detection Object Detection +3

Gradually Updated Neural Networks for Large-Scale Image Recognition

no code implementations ICML 2018 Siyuan Qiao, Zhishuai Zhang, Wei Shen, Bo wang, Alan Yuille

Our method is by introducing computation orderings to the channels within convolutional layers or blocks, based on which we gradually compute the outputs in a channel-wise manner.

Visual Concepts and Compositional Voting

no code implementations13 Nov 2017 Jianyu Wang, Zhishuai Zhang, Cihang Xie, Yuyin Zhou, Vittal Premachandran, Jun Zhu, Lingxi Xie, Alan Yuille

We use clustering algorithms to study the population activities of the features and extract a set of visual concepts which we show are visually tight and correspond to semantic parts of vehicles.

Clustering Semantic Part Detection

DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion

no code implementations CVPR 2018 Zhishuai Zhang, Cihang Xie, Jian-Yu Wang, Lingxi Xie, Alan L. Yuille

The first layer extracts the evidence of local visual cues, and the second layer performs a voting mechanism by utilizing the spatial relationship between visual cues and semantic parts.

Semantic Part Detection

Adversarial Examples for Semantic Segmentation and Object Detection

2 code implementations ICCV 2017 Cihang Xie, Jian-Yu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille

Our observation is that both segmentation and detection are based on classifying multiple targets on an image (e. g., the basic target is a pixel or a receptive field in segmentation, and an object proposal in detection), which inspires us to optimize a loss function over a set of pixels/proposals for generating adversarial perturbations.

Adversarial Attack object-detection +3

Unsupervised learning of object semantic parts from internal states of CNNs by population encoding

1 code implementation21 Nov 2015 Jianyu Wang, Zhishuai Zhang, Cihang Xie, Vittal Premachandran, Alan Yuille

We address the key question of how object part representations can be found from the internal states of CNNs that are trained for high-level tasks, such as object classification.

Clustering Keypoint Detection

Cannot find the paper you are looking for? You can Submit a new open access paper.