no code implementations • 15 Mar 2022 • Zhongzhi Yu, Yonggan Fu, Shang Wu, Mengquan Li, Haoran You, Yingyan Lin
While existing works mostly fix the model precision during the whole training process, a few pioneering works have shown that dynamic precision schedules help DNNs converge to a better accuracy while leading to a lower training cost than their static precision training counterparts.
no code implementations • 21 Dec 2021 • Zhongzhi Yu, Yonggan Fu, Sicheng Li, Chaojian Li, Yingyan Lin
ViTs are often too computationally expensive to be fitted onto real-world resource-constrained devices, due to (1) their quadratically increased complexity with the number of input tokens and (2) their overparameterized self-attention heads and model depth.
no code implementations • 24 Aug 2021 • Gang Yu, Zhongzhi Yu, Yemin Shi, Yingshuo Wang, Xiaoqing Liu, Zheming Li, Yonggen Zhao, Fenglei Sun, Yizhou Yu, Qiang Shu
The first stage structuralizes test results by extracting relevant numerical values from clinical notes, and the disease identification stage provides a diagnosis based on text-form clinical notes and the structured data obtained from the first stage.
no code implementations • 17 Aug 2021 • Mengquan Li, Zhongzhi Yu, Yongan Zhang, Yonggan Fu, Yingyan Lin
The recent breakthroughs and prohibitive complexities of Deep Neural Networks (DNNs) have excited extensive interest in domain-specific DNN accelerators, among which optical DNN accelerators are particularly promising thanks to their unprecedented potential of achieving superior performance-per-watt.
no code implementations • 11 Jun 2021 • Yonggan Fu, Yongan Zhang, Chaojian Li, Zhongzhi Yu, Yingyan Lin
Driven by the explosive interest in applying deep reinforcement learning (DRL) agents to numerous real-time control and decision-making applications, there has been a growing demand to deploy DRL agents to empower daily-life intelligent devices, while the prohibitive complexity of DRL stands at odds with limited on-device resources.
1 code implementation • 22 Apr 2021 • Yonggan Fu, Zhongzhi Yu, Yongan Zhang, Yifan Jiang, Chaojian Li, Yongyuan Liang, Mingchao Jiang, Zhangyang Wang, Yingyan Lin
The promise of Deep Neural Network (DNN) powered Internet of Thing (IoT) devices has motivated a tremendous demand for automated solutions to enable fast development and deployment of efficient (1) DNNs equipped with instantaneous accuracy-efficiency trade-off capability to accommodate the time-varying resources at IoT devices and (2) dataflows to optimize DNNs' execution efficiency on different devices.
1 code implementation • 19 Mar 2021 • Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Yingyan Lin
To design HW-NAS-Bench, we carefully collected the measured/estimated hardware performance of all the networks in the search spaces of both NAS-Bench-201 and FBNet, on six hardware devices that fall into three categories (i. e., commercial edge devices, FPGA, and ASIC).
no code implementations • ICLR 2021 • Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Cong Hao, Yingyan Lin
To design HW-NAS-Bench, we carefully collected the measured/estimated hardware performance (e. g., energy cost and latency) of all the networks in the search space of both NAS-Bench-201 and FBNet, considering six hardware devices that fall into three categories (i. e., commercial edge devices, FPGA, and ASIC).
no code implementations • 24 Dec 2020 • Yonggan Fu, Zhongzhi Yu, Yongan Zhang, Yingyan Lin
We therefore propose an Auto-Agent-Distiller (A2D) framework, which to our best knowledge is the first neural architecture search (NAS) applied to DRL to automatically search for the optimal DRL agents for various tasks that optimize both the test scores and efficiency.
no code implementations • 11 Mar 2020 • Zhongzhi Yu, Yemin Shi, Tiejun Huang, Yizhou Yu
Thus, KQ can represent the weight tensor in the convolution layer with low-bit indexes and a kernel codebook with limited size, which enables KQ to achieve significant compression ratio.
no code implementations • SEMEVAL 2018 • Qiang Ning, Zhongzhi Yu, Chuchu Fan, Dan Roth
As a result, only a small number of documents are typically annotated, limiting the coverage of various lexical/semantic phenomena.
no code implementations • 18 Apr 2018 • Qiang Ning, Zhongzhi Yu, Chuchu Fan, Dan Roth
As a result, only a small number of documents are typically annotated, limiting the coverage of various lexical/semantic phenomena.