Search Results for author: Zhuoye Ding

Found 24 papers, 4 papers with code

Summarizing Dialogues with Negative Cues

no code implementations COLING 2022 Junpeng Liu, Yanyan Zou, Yuxuan Xi, Shengjie Li, Mian Ma, Zhuoye Ding

In this work, rather than directly forcing a summarization system to merely pay more attention to the salient pieces, we propose to explicitly have the model perceive the redundant parts of an input dialogue history during the training phase.

Abstractive Dialogue Summarization

Adaptive Bridge between Training and Inference for Dialogue Generation

no code implementations EMNLP 2021 Haoran Xu, Hainan Zhang, Yanyan Zou, Hongshen Chen, Zhuoye Ding, Yanyan Lan

Although exposure bias has been widely studied in some NLP tasks, it faces its unique challenges in dialogue response generation, the representative one-to-various generation scenario. In real human dialogue, there are many appropriate responses for the same context, not only with different expressions, but also with different topics.

Dialogue Generation NMT +1

Interactive Latent Knowledge Selection for E-Commerce Product Copywriting Generation

no code implementations ECNLP (ACL) 2022 Zeming Wang, Yanyan Zou, Yuejian Fang, Hongshen Chen, Mian Ma, Zhuoye Ding, Bo Long

As the multi-modal e-commerce is thriving, high-quality advertising product copywriting has gain more attentions, which plays a crucial role in the e-commerce recommender, advertising and even search platforms. The advertising product copywriting is able to enhance the user experience by highlighting the product’s characteristics with textual descriptions and thus to improve the likelihood of user click and purchase.

Attribute

Automatic Scene-based Topic Channel Construction System for E-Commerce

no code implementations6 Oct 2022 Peng Lin, Yanyan Zou, Lingfei Wu, Mian Ma, Zhuoye Ding, Bo Long

To conduct scene marketing for e-commerce platforms, this work presents a novel product form, scene-based topic channel which typically consists of a list of diverse products belonging to the same usage scenario and a topic title that describes the scenario with marketing words.

Clustering Marketing

Automatic Product Copywriting for E-Commerce

no code implementations15 Dec 2021 Xueying Zhang, Yanyan Zou, Hainan Zhang, Jing Zhou, Shiliang Diao, Jiajia Chen, Zhuoye Ding, Zhen He, Xueqi He, Yun Xiao, Bo Long, Han Yu, Lingfei Wu

It consists of two main components: 1) natural language generation, which is built from a transformer-pointer network and a pre-trained sequence-to-sequence model based on millions of training data from our in-house platform; and 2) copywriting quality control, which is based on both automatic evaluation and human screening.

Product Recommendation Text Generation

Learning to Generate Visual Questions with Noisy Supervision

1 code implementation NeurIPS 2021 Shen Kai, Lingfei Wu, Siliang Tang, Yueting Zhuang, Zhen He, Zhuoye Ding, Yun Xiao, Bo Long

The task of visual question generation (VQG) aims to generate human-like neural questions from an image and potentially other side information (e. g., answer type or the answer itself).

Question Generation Question-Generation +1

Adaptive Bridge between Training and Inference for Dialogue

no code implementations22 Oct 2021 Haoran Xu, Hainan Zhang, Yanyan Zou, Hongshen Chen, Zhuoye Ding, Yanyan Lan

Although exposure bias has been widely studied in some NLP tasks, it faces its unique challenges in dialogue response generation, the representative one-to-various generation scenario.

Dialogue Generation NMT +1

FCM: A Fine-grained Comparison Model for Multi-turn Dialogue Reasoning

no code implementations Findings (EMNLP) 2021 Xu Wang, Hainan Zhang, Shuai Zhao, Yanyan Zou, Hongshen Chen, Zhuoye Ding, Bo Cheng, Yanyan Lan

Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model to prefer a candidate that is logically consistent with the speaker's history logic.

Reading Comprehension

Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization

1 code implementation Findings (EMNLP) 2021 Junpeng Liu, Yanyan Zou, Hainan Zhang, Hongshen Chen, Zhuoye Ding, Caixia Yuan, Xiaojie Wang

To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task.

Abstractive Dialogue Summarization Contrastive Learning +3

Augmenting Knowledge-grounded Conversations with Sequential Knowledge Transition

no code implementations NAACL 2021 Haolan Zhan, Hainan Zhang, Hongshen Chen, Zhuoye Ding, Yongjun Bao, Yanyan Lan

In particular, a sequential knowledge transition model equipped with a pre-trained knowledge-aware response generator (SKT-KG) formulates the high-level knowledge transition and fully utilizes the limited knowledge data.

Response Generation

Probing Product Description Generation via Posterior Distillation

no code implementations2 Mar 2021 Haolan Zhan, Hainan Zhang, Hongshen Chen, Lei Shen, Zhuoye Ding, Yongjun Bao, Weipeng Yan, Yanyan Lan

To tackle this problem, we propose an adaptive posterior network based on Transformer architecture that can utilize user-cared information from customer reviews.

User-Inspired Posterior Network for Recommendation Reason Generation

no code implementations16 Feb 2021 Haolan Zhan, Hainan Zhang, Hongshen Chen, Lei Shen, Yanyan Lan, Zhuoye Ding, Dawei Yin

A simple and effective way is to extract keywords directly from the knowledge-base of products, i. e., attributes or title, as the recommendation reason.

Question Answering

Modeling Topical Relevance for Multi-Turn Dialogue Generation

no code implementations27 Sep 2020 Hainan Zhang, Yanyan Lan, Liang Pang, Hongshen Chen, Zhuoye Ding, Dawei Yin

Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly.

Dialogue Generation Sentence

Collaborative Group Learning

no code implementations16 Sep 2020 Shaoxiong Feng, Hongshen Chen, Xuancheng Ren, Zhuoye Ding, Kan Li, Xu sun

Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima.

Computational Efficiency Inductive Bias +1

Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems

no code implementations13 Feb 2019 Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin

Though reinforcement learning~(RL) naturally fits the problem of maximizing the long term rewards, applying RL to optimize long-term user engagement is still facing challenges: user behaviors are versatile and difficult to model, which typically consists of both instant feedback~(e. g. clicks, ordering) and delayed feedback~(e. g. dwell time, revisit); in addition, performing effective off-policy learning is still immature, especially when combining bootstrapping and function approximation.

Recommendation Systems reinforcement-learning +2

Deep Reinforcement Learning for Page-wise Recommendations

no code implementations7 May 2018 Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, Jiliang Tang

In particular, we propose a principled approach to jointly generate a set of complementary items and the corresponding strategy to display them in a 2-D page; and propose a novel page-wise recommendation framework based on deep reinforcement learning, DeepPage, which can optimize a page of items with proper display based on real-time feedback from users.

Deep Reinforcement Learning Recommendation Systems +2

Deep Reinforcement Learning for List-wise Recommendations

7 code implementations30 Dec 2017 Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, Jiliang Tang

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services.

Deep Reinforcement Learning Recommendation Systems +2

Cannot find the paper you are looking for? You can Submit a new open access paper.