no code implementations • 19 Apr 2022 • Yue Cao, Zhaolin Wan, Dongwei Ren, Zifei Yan, WangMeng Zuo
Particularly, by treating all labeled data as positive samples, PU learning is leveraged to identify negative samples (i. e., outliers) from unlabeled data.
1 code implementation • 4 Apr 2022 • Ming Liu, Jianan Pan, Zifei Yan, WangMeng Zuo, Lei Zhang
Meanwhile, diverse testing sets are also provided with different types of reflection and scenes.
1 code implementation • 24 Jun 2020 • Jiazhi Du, Xin Qiao, Zifei Yan, Hongzhi Zhang, WangMeng Zuo
For flexible non-blind image denoising, existing deep networks usually take both noisy image and noise level map as the input to handle various noise levels with a single model.
2 code implementations • CVPR 2019 • Shi Guo, Zifei Yan, Kai Zhang, WangMeng Zuo, Lei Zhang
While deep convolutional neural networks (CNNs) have achieved impressive success in image denoising with additive white Gaussian noise (AWGN), their performance remains limited on real-world noisy photographs.
Ranked #3 on
Denoising
on Darmstadt Noise Dataset