no code implementations • 28 Nov 2024 • Zijian He, Kang Wang, Tian Fang, Lei Su, Rui Chen, Xihong Fei
With the rapid development of global industrial production, the demand for reliability in power equipment has been continuously increasing.
2 code implementations • 17 Oct 2024 • Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, Yuming Du
Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation.
no code implementations • 26 Sep 2024 • Christina Zhang, Simran Motwani, Matthew Yu, Ji Hou, Felix Juefei-Xu, Sam Tsai, Peter Vajda, Zijian He, Jialiang Wang
Latent diffusion models (LDMs) have made significant advancements in the field of image generation in recent years.
no code implementations • 15 Jul 2024 • Zijian He, Peixin Chen, Guangrun Wang, Guanbin Li, Philip H. S. Torr, Liang Lin
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos.
1 code implementation • 8 May 2024 • Vikranth Srivatsa, Zijian He, Reyna Abhyankar, Dongming Li, Yiying Zhang
We designed a distributed scheduling system that co-optimizes KV state reuse and computation load-balancing with a new scheduling algorithm and a hierarchical scheduling mechanism.
no code implementations • 7 Apr 2024 • Yuanfeng Xu, Yuhao Chen, Zhongzhan Huang, Zijian He, Guangrun Wang, Philip Torr, Liang Lin
In this paper, we present AnimateZoo, a zero-shot diffusion-based video generator to address this challenging cross-species animation issue, aiming to accurately produce animal animations while preserving the background.
1 code implementation • 2 Feb 2024 • Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao Zhang, Yiying Zhang
Large language models are increasingly integrated with external environments, tools, and agents like ChatGPT plugins to extend their capability beyond language-centric tasks.
no code implementations • CVPR 2024 • Jonas Schult, Sam Tsai, Lukas Höllein, Bichen Wu, Jialiang Wang, Chih-Yao Ma, Kunpeng Li, Xiaofang Wang, Felix Wimbauer, Zijian He, Peizhao Zhang, Bastian Leibe, Peter Vajda, Ji Hou
Central to our approach is a user-defined 3D semantic proxy room that outlines a rough room layout based on semantic bounding boxes and a textual description of the overall room style.
no code implementations • CVPR 2024 • Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, Jialiang Wang
However, one of the major drawbacks of diffusion models is that the image generation process is costly.
no code implementations • 27 Sep 2023 • Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text.
2 code implementations • ICCV 2023 • Chenfeng Xu, Bichen Wu, Ji Hou, Sam Tsai, RuiLong Li, Jialiang Wang, Wei Zhan, Zijian He, Peter Vajda, Kurt Keutzer, Masayoshi Tomizuka
We present NeRF-Det, a novel method for indoor 3D detection with posed RGB images as input.
no code implementations • CVPR 2023 • Ji Hou, Xiaoliang Dai, Zijian He, Angela Dai, Matthias Nießner
Current popular backbones in computer vision, such as Vision Transformers (ViT) and ResNets are trained to perceive the world from 2D images.
no code implementations • CVPR 2023 • Jialiang Wang, Daniel Scharstein, Akash Bapat, Kevin Blackburn-Matzen, Matthew Yu, Jonathan Lehman, Suhib Alsisan, Yanghan Wang, Sam Tsai, Jan-Michael Frahm, Zijian He, Peter Vajda, Michael F. Cohen, Matt Uyttendaele
We present the design of a productionized end-to-end stereo depth sensing system that does pre-processing, online stereo rectification, and stereo depth estimation with a fallback to monocular depth estimation when rectification is unreliable.
no code implementations • 7 Oct 2022 • Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, Zsolt Kira
Specifically, Polyhistor achieves competitive accuracy compared to the state-of-the-art while only using ~10% of their trainable parameters.
no code implementations • 29 Aug 2022 • Yen-Cheng Liu, Chih-Yao Ma, Xiaoliang Dai, Junjiao Tian, Peter Vajda, Zijian He, Zsolt Kira
To address this problem, we consider online and offline OOD detection modules, which are integrated with SSOD methods.
2 code implementations • CVPR 2022 • Yu-Jhe Li, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu, Kan Chen, Bichen Wu, Zijian He, Kris Kitani, Peter Vajda
To mitigate this problem, we propose a teacher-student framework named Adaptive Teacher (AT) which leverages domain adversarial learning and weak-strong data augmentation to address the domain gap.
no code implementations • 29 Sep 2021 • Yu-Jhe Li, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu, Kan Chen, Bichen Wu, Zijian He, Kris M. Kitani, Peter Vajda
This enables the student model to capture domain-invariant features.
4 code implementations • ICLR 2021 • Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu, Zsolt Kira, Peter Vajda
To address this, we introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner.
1 code implementation • 27 Aug 2020 • Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley, Francis Ge, Yangming Chong, Josh Patterson, Jan-Michael Frahm, Shu Wu, Matthew Yu, Peizhao Zhang, Zijian He, Peter Vajda, Ayush Saraf, Michael Cohen
3D photos are static in time, like traditional photos, but are displayed with interactive parallax on mobile or desktop screens, as well as on Virtual Reality devices, where viewing it also includes stereo.
2 code implementations • CVPR 2021 • Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, Joseph E. Gonzalez
To address this, we present Neural Architecture-Recipe Search (NARS) to search both (a) architectures and (b) their corresponding training recipes, simultaneously.
Ranked #5 on Neural Architecture Search on ImageNet
1 code implementation • CVPR 2020 • Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, Peter Vajda, Joseph E. Gonzalez
We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands.
Ranked #68 on Neural Architecture Search on ImageNet
1 code implementation • ICCV 2019 • Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee, Sam Tsai, Fei Yang, Yuri Boykov
Many automated processes such as auto-piloting rely on a good semantic segmentation as a critical component.
1 code implementation • CVPR 2019 • Xuelun Shen, Cheng Wang, Xin Li, Zenglei Yu, Jonathan Li, Chenglu Wen, Ming Cheng, Zijian He
This paper proposes a new end-to-end trainable matching network based on receptive field, RF-Net, to compute sparse correspondence between images.