no code implementations • 14 Jul 2023 • Tobias Schröder, Zijing Ou, Yingzhen Li, Andrew B. Duncan
Training energy-based models (EBMs) on discrete spaces is challenging because sampling over such spaces can be difficult.
1 code implementation • NeurIPS 2023 • Tobias Schröder, Zijing Ou, Jen Ning Lim, Yingzhen Li, Sebastian J. Vollmer, Andrew B. Duncan
Energy-based models are a simple yet powerful class of probabilistic models, but their widespread adoption has been limited by the computational burden of training them.
1 code implementation • 21 Oct 2022 • Wangjie Jiang, Zhihao Ye, Zijing Ou, Ruihui Zhao, Jianguang Zheng, Yi Liu, Siheng Li, Bang Liu, Yujiu Yang, Yefeng Zheng
In this work, we define the task of Medical-domain Chinese Spelling Correction and propose MCSCSet, a large scale specialist-annotated dataset that contains about 200k samples.
Optical Character Recognition
Optical Character Recognition (OCR)
+1
no code implementations • 13 May 2022 • Zenan Xu, Wanjun Zhong, Qinliang Su, Zijing Ou, Fuwei Zhang
A key challenge in video question answering is how to realize the cross-modal semantic alignment between textual concepts and corresponding visual objects.
1 code implementation • 3 Mar 2022 • Zijing Ou, Tingyang Xu, Qinliang Su, Yingzhen Li, Peilin Zhao, Yatao Bian
Learning neural set functions becomes increasingly more important in many applications like product recommendation and compound selection in AI-aided drug discovery.
1 code implementation • 12 Oct 2021 • Jiayuan Ding, Tong Xiang, Zijing Ou, Wangyang Zuo, Ruihui Zhao, Chenghua Lin, Yefeng Zheng, Bang Liu
In this paper, we introduce a new task named Reading Path Generation (RPG) which aims at automatically producing a path of papers to read for a given query.
1 code implementation • Findings (EMNLP) 2021 • Zijing Ou, Qinliang Su, Jianxing Yu, Ruihui Zhao, Yefeng Zheng, Bang Liu
As a first try, we modify existing generative hashing models to accommodate the BERT embeddings.
2 code implementations • ACL 2021 • Zijing Ou, Qinliang Su, Jianxing Yu, Bang Liu, Jingwen Wang, Ruihui Zhao, Changyou Chen, Yefeng Zheng
With the need of fast retrieval speed and small memory footprint, document hashing has been playing a crucial role in large-scale information retrieval.
1 code implementation • 13 May 2021 • Zexuan Qiu, Qinliang Su, Zijing Ou, Jianxing Yu, Changyou Chen
Many unsupervised hashing methods are implicitly established on the idea of reconstructing the input data, which basically encourages the hashing codes to retain as much information of original data as possible.
1 code implementation • NAACL 2021 • Zhengxu Hou, Bang Liu, Ruihui Zhao, Zijing Ou, Yafei Liu, Xi Chen, Yefeng Zheng
For task-oriented dialog systems, training a Reinforcement Learning (RL) based Dialog Management module suffers from low sample efficiency and slow convergence speed due to the sparse rewards in RL. To solve this problem, many strategies have been proposed to give proper rewards when training RL, but their rewards lack interpretability and cannot accurately estimate the distribution of state-action pairs in real dialogs.