no code implementations • ECCV 2020 • Qili Deng, Ziling Huang, Chung-Chi Tsai, Chia-Wen Lin
In this paper, we present a Haze-Aware Representation Distillation Generative Adversarial Network named HardGAN for single-image dehazing.
no code implementations • 25 Jul 2023 • Leiming Chen, Weishan Zhang, Cihao Dong, Sibo Qiao, Ziling Huang, Yuming Nie, Zhaoxiang Hou, Chee Wei Tan
Traditional federated learning uses the number of samples to calculate the weights of each client model and uses this fixed weight value to fusion the global model.
no code implementations • 4 Apr 2023 • Qinlong Wang, Tingfeng Lan, Yinghao Tang, Ziling Huang, Yiheng Du, HaiTao Zhang, Jian Sha, Hui Lu, Yuanchun Zhou, Ke Zhang, Mingjie Tang
To overcome them, we introduce DLRover-RM, an elastic training framework for DLRMs designed to increase resource utilization and handle the instability of a cloud environment.
3 code implementations • 31 Dec 2021 • Deng-Ping Fan, Ziling Huang, Peng Zheng, Hong Liu, Xuebin Qin, Luc van Gool
Besides, we elaborate comprehensive experiments on the existing 19 cutting-edge models.
no code implementations • 7 May 2020 • Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru Vasluianu, Radu Timofte, Jing Liu, Haiyan Wu, Yuan Xie, Yanyun Qu, Lizhuang Ma, Ziling Huang, Qili Deng, Ju-Chin Chao, Tsung-Shan Yang, Peng-Wen Chen, Po-Min Hsu, Tzu-Yi Liao, Chung-En Sun, Pei-Yuan Wu, Jeonghyeok Do, Jongmin Park, Munchurl Kim, Kareem Metwaly, Xuelu Li, Tiantong Guo, Vishal Monga, Mingzhao Yu, Venkateswararao Cherukuri, Shiue-Yuan Chuang, Tsung-Nan Lin, David Lee, Jerome Chang, Zhan-Han Wang, Yu-Bang Chang, Chang-Hong Lin, Yu Dong, Hong-Yu Zhou, Xiangzhen Kong, Sourya Dipta Das, Saikat Dutta, Xuan Zhao, Bing Ouyang, Dennis Estrada, Meiqi Wang, Tianqi Su, Siyi Chen, Bangyong Sun, Vincent Whannou de Dravo, Zhe Yu, Pratik Narang, Aryan Mehra, Navaneeth Raghunath, Murari Mandal
We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor.
no code implementations • 13 May 2019 • Ziling Huang, Zheng Wang, Chung-Chi Tsai, Shin'ichi Satoh, Chia-Wen Lin
To gain the superiority of deep learning models, we treat a group as multiple persons and transfer the domain of a labeled ReID dataset to a G-ReID target dataset style to learn single representations.