no code implementations • 16 Sep 2024 • Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön
Diffusion models have achieved remarkable progress in generative modelling, particularly in enhancing image quality to conform to human preferences.
1 code implementation • 15 Sep 2024 • Zheng Zhao, Ziwei Luo, Jens Sjölund, Thomas B. Schön
Generative diffusions are a powerful class of Monte Carlo samplers that leverage bridging Markov processes to approximate complex, high-dimensional distributions, such as those found in image processing and language models.
1 code implementation • 15 Apr 2024 • Wenyi Lian, Wenjing Lian, Ziwei Luo
In this work, we propose a novel method that shifts the focus from a deterministic pixel-by-pixel comparison to a statistical perspective, emphasizing the learning of distributions rather than individual pixel values.
2 code implementations • 15 Apr 2024 • Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön
Though diffusion models have been successfully applied to various image restoration (IR) tasks, their performance is sensitive to the choice of training datasets.
1 code implementation • 6 Feb 2024 • Ruoqi Zhang, Ziwei Luo, Jens Sjölund, Thomas B. Schön, Per Mattsson
We show that such an SDE has a solution that we can use to calculate the log probability of the policy, yielding an entropy regularizer that improves the exploration of offline datasets.
1 code implementation • 2 Oct 2023 • Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön
In this paper, we present a degradation-aware vision-language model (DA-CLIP) to better transfer pretrained vision-language models to low-level vision tasks as a multi-task framework for image restoration.
Ranked #2 on
Single Image Deraining
on Rain100H
2 code implementations • 24 Sep 2023 • Xin Wang, Ziwei Luo, Jing Hu, Chengming Feng, Shu Hu, Bin Zhu, Xi Wu, Hongtu Zhu, Xin Li, Siwei Lyu
The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image.
1 code implementation • CVPRW 2023 • Marcos V. Conde, Manuel Kolmet, Tim Seizinger, Tom E. Bishop, Radu Timofte, Xiangyu Kong, Dafeng Zhang, Jinlong Wu, Fan Wang, Juewen Peng, Zhiyu Pan, Chengxin Liu, Xianrui Luo, Huiqiang Sun, Liao Shen, Zhiguo Cao, Ke Xian, Chaowei Liu, Zigeng Chen, Xingyi Yang, Songhua Liu, Yongcheng Jing, Michael Bi Mi, Xinchao Wang, Zhihao Yang, Wenyi Lian, Siyuan Lai, Haichuan Zhang, Trung Hoang, Amirsaeed Yazdani, Vishal Monga, Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön, Yuxuan Zhao, Baoliang Chen, Yiqing Xu, JiXiang Niu
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge.
1 code implementation • 17 Apr 2023 • Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön
This work aims to improve the applicability of diffusion models in realistic image restoration.
1 code implementation • 27 Jan 2023 • Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön
This paper presents a stochastic differential equation (SDE) approach for general-purpose image restoration.
Ranked #3 on
Single Image Deraining
on Rain100H
2 code implementations • 7 Nov 2022 • Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He
While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints.
2 code implementations • 24 Aug 2022 • Ziwei Luo, Youwei Li, Lei Yu, Qi Wu, Zhihong Wen, Haoqiang Fan, Shuaicheng Liu
The proposed nearest convolution has the same performance as the nearest upsampling but is much faster and more suitable for Android NNAPI.
2 code implementations • 11 May 2022 • Yawei Li, Kai Zhang, Radu Timofte, Luc van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu, Zongcai Du, Ding Liu, Chenhui Zhou, Jingyi Chen, Qingrui Han, Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Yu Qiao, Chao Dong, Long Sun, Jinshan Pan, Yi Zhu, Zhikai Zong, Xiaoxiao Liu, Zheng Hui, Tao Yang, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Yanbo Wang, Xiaozhong Ji, Chuming Lin, Donghao Luo, Ying Tai, Chengjie Wang, Zhizhong Zhang, Yuan Xie, Shen Cheng, Ziwei Luo, Lei Yu, Zhihong Wen, Qi Wu1, Youwei Li, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Yuanfei Huang, Meiguang Jin, Hua Huang, Jing Liu, Xinjian Zhang, Yan Wang, Lingshun Long, Gen Li, Yuanfan Zhang, Zuowei Cao, Lei Sun, Panaetov Alexander, Yucong Wang, Minjie Cai, Li Wang, Lu Tian, Zheyuan Wang, Hongbing Ma, Jie Liu, Chao Chen, Yidong Cai, Jie Tang, Gangshan Wu, Weiran Wang, Shirui Huang, Honglei Lu, Huan Liu, Keyan Wang, Jun Chen, Shi Chen, Yuchun Miao, Zimo Huang, Lefei Zhang, Mustafa Ayazoğlu, Wei Xiong, Chengyi Xiong, Fei Wang, Hao Li, Ruimian Wen, Zhijing Yang, Wenbin Zou, Weixin Zheng, Tian Ye, Yuncheng Zhang, Xiangzhen Kong, Aditya Arora, Syed Waqas Zamir, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Dandan Gaoand Dengwen Zhouand Qian Ning, Jingzhu Tang, Han Huang, YuFei Wang, Zhangheng Peng, Haobo Li, Wenxue Guan, Shenghua Gong, Xin Li, Jun Liu, Wanjun Wang, Dengwen Zhou, Kun Zeng, Hanjiang Lin, Xinyu Chen, Jinsheng Fang
The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29. 00dB on DIV2K validation set.
1 code implementation • 18 Apr 2022 • Ziwei Luo, Youwei Li, Shen Cheng, Lei Yu, Qi Wu, Zhihong Wen, Haoqiang Fan, Jian Sun, Shuaicheng Liu
To overcome the challenges in BurstSR, we propose a Burst Super-Resolution Transformer (BSRT), which can significantly improve the capability of extracting inter-frame information and reconstruction.
Ranked #1 on
Burst Image Super-Resolution
on SyntheticBurst
2 code implementations • CVPR 2022 • Ziwei Luo, Haibin Huang, Lei Yu, Youwei Li, Haoqiang Fan, Shuaicheng Liu
In this paper, we tackle the problem of blind image super-resolution(SR) with a reformulated degradation model and two novel modules.
Ranked #1 on
Blind Super-Resolution
on DIV2KRK - 2x upscaling
1 code implementation • 14 Dec 2021 • Ziwei Luo, Jing Hu, Xin Wang, Shu Hu, Bin Kong, Youbing Yin, Qi Song, Xi Wu, Siwei Lyu
We evaluate our method on several 2D and 3D medical image datasets, some of which contain large deformations.
1 code implementation • 14 Dec 2021 • Ziwei Luo, Jing Hu, Xin Wang, Siwei Lyu, Bin Kong, Youbing Yin, Qi Song, Xi Wu
Training a model-free deep reinforcement learning model to solve image-to-image translation is difficult since it involves high-dimensional continuous state and action spaces.
2 code implementations • Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2021 • Ziwei Luo, Lei Yu, Xuan Mo, Youwei Li, Lanpeng Jia, Haoqiang Fan, Jian Sun, Shuaicheng Liu
We propose a novel architecture to handle the problem of multi-frame super-resolution (MFSR).
Ranked #2 on
Burst Image Super-Resolution
on SyntheticBurst
no code implementations • 7 Jun 2021 • Goutam Bhat, Martin Danelljan, Radu Timofte, Kazutoshi Akita, Wooyeong Cho, Haoqiang Fan, Lanpeng Jia, Daeshik Kim, Bruno Lecouat, Youwei Li, Shuaicheng Liu, Ziluan Liu, Ziwei Luo, Takahiro Maeda, Julien Mairal, Christian Micheloni, Xuan Mo, Takeru Oba, Pavel Ostyakov, Jean Ponce, Sanghyeok Son, Jian Sun, Norimichi Ukita, Rao Muhammad Umer, Youliang Yan, Lei Yu, Magauiya Zhussip, Xueyi Zou
This paper reviews the NTIRE2021 challenge on burst super-resolution.