Search Results for author: Zixuan Li

Found 7 papers, 4 papers with code

Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning

1 code implementation ACL 2022 Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng Guo, Xueqi Cheng

Furthermore, these models are all trained offline, which cannot well adapt to the changes of evolutional patterns from then on.

AutoMine: An Unmanned Mine Dataset

no code implementations CVPR 2022 Yuchen Li, Zixuan Li, Siyu Teng, Yu Zhang, YuHang Zhou, Yuchang Zhu, Dongpu Cao, Bin Tian, Yunfeng Ai, Zhe XuanYuan, Long Chen

The main contributions of the AutoMine dataset are as follows: 1. The first autonomous driving dataset for perception and localization in mine scenarios.

Autonomous Driving

What is Event Knowledge Graph: A Survey

1 code implementation31 Dec 2021 Saiping Guan, Xueqi Cheng, Long Bai, Fujun Zhang, Zixuan Li, Yutao Zeng, Xiaolong Jin, Jiafeng Guo

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG).

Question Answering Text Generation

Integrating Deep Event-Level and Script-Level Information for Script Event Prediction

1 code implementation EMNLP 2021 Long Bai, Saiping Guan, Jiafeng Guo, Zixuan Li, Xiaolong Jin, Xueqi Cheng

In this paper, we propose a Transformer-based model, called MCPredictor, which integrates deep event-level and script-level information for script event prediction.

Search from History and Reason for Future: Two-stage Reasoning on Temporal Knowledge Graphs

no code implementations ACL 2021 Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng Guo, Yuanzhuo Wang, Xueqi Cheng

Specifically, at the clue searching stage, CluSTeR learns a beam search policy via reinforcement learning (RL) to induce multiple clues from historical facts.

Knowledge Graphs

Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning

1 code implementation21 Apr 2021 Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, HuaWei Shen, Yuanzhuo Wang, Xueqi Cheng

To capture these properties effectively and efficiently, we propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN), called RE-GCN, which learns the evolutional representations of entities and relations at each timestamp by modeling the KG sequence recurrently.

Representation Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.