no code implementations • 5 Nov 2024 • Mingcheng Li, Dingkang Yang, Yang Liu, Shunli Wang, Jiawei Chen, Shuaibing Wang, Jinjie Wei, Yue Jiang, Qingyao Xu, Xiaolu Hou, Mingyang Sun, Ziyun Qian, Dongliang Kou, Lihua Zhang
Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction.
no code implementations • 4 Aug 2024 • Shuaibing Wang, Shunli Wang, Mingcheng Li, Dingkang Yang, Haopeng Kuang, Ziyun Qian, Lihua Zhang
However, the heavy sampling steps required by diffusion models pose a substantial computational burden, limiting their practicality in real-time applications.
no code implementations • 5 May 2024 • Ziyun Qian, Zeyu Xiao, Zhenyi Wu, Dingkang Yang, Mingcheng Li, Shunli Wang, Shuaibing Wang, Dongliang Kou, Lihua Zhang
To address these problems, we consider style motion as a condition and propose the Style Motion Conditioned Diffusion (SMCD) framework for the first time, which can more comprehensively learn the style features of motion.
no code implementations • CVPR 2024 • Mingcheng Li, Dingkang Yang, Xiao Zhao, Shuaibing Wang, Yan Wang, Kun Yang, Mingyang Sun, Dongliang Kou, Ziyun Qian, Lihua Zhang
Specifically, we present a sample-level contrastive distillation mechanism that transfers comprehensive knowledge containing cross-sample correlations to reconstruct missing semantics.
2 code implementations • 11 Mar 2024 • Jiawei Chen, Yue Jiang, Dingkang Yang, Mingcheng Li, Jinjie Wei, Ziyun Qian, Lihua Zhang
In this paper, we delve into the fine-tuning methods of LLMs and conduct extensive experiments to investigate the impact of fine-tuning methods for large models on the existing multimodal model in the medical domain from the training data level and the model structure level.
1 code implementation • 27 Feb 2024 • Shuaibing Wang, Shunli Wang, Dingkang Yang, Mingcheng Li, Ziyun Qian, Liuzhen Su, Lihua Zhang
KGC extracts hand prior information from 2D hand pose by graph convolution.