no code implementations • ACL 2020 • Tian Jin, Zhun Liu, Shengjia Yan, Alex Eichenberger, re, Louis-Philippe Morency
In this paper, we propose \textbf{N3} (\textbf{N}eural \textbf{N}etworks from \textbf{N}atural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model.
no code implementations • JEPTALNRECITAL 2020 • Alex Suire, re, Alba Bossoms Mesa, Michel Raymond, Melissa Barkat-Defradas
Le symbolisme phon{\'e}tique sugg{\`e}re un lien naturel entre les sons et la signification d{'}un mot.
1 code implementation • JEPTALNRECITAL 2020 • Hang Le, Lo{\"\i}c Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alex Allauzen, re, Beno{\^\i}t Crabb{\'e}, Laurent Besacier, Didier Schwab
Les mod{\`e}les de langue pr{\'e}-entra{\^\i}n{\'e}s sont d{\'e}sormais indispensables pour obtenir des r{\'e}sultats {\`a} l{'}{\'e}tat-de-l{'}art dans de nombreuses t{\^a}ches du TALN.
no code implementations • JEPTALNRECITAL 2020 • Syrielle Montariol, Alex Allauzen, re
Nous exp{\'e}rimentons sur un corpus de rapports financiers d{'}entreprises fran{\c{c}}aises, pour appr{\'e}hender les enjeux et pr{\'e}occupations propres {\`a} certaines p{\'e}riodes, acteurs et secteurs d{'}activit{\'e}s.
no code implementations • LREC 2020 • Alex Tessarollo, Alex Rademaker, re
We extend the Open WordNet for English (OWN-EN) with rock-related and other lithological terms using the authoritative source of GBA{'}s Thesaurus.
no code implementations • LREC 2020 • John Philip McCrae, Alex Rademaker, re, Ewa Rudnicka, Francis Bond
WordNet, while one of the most widely used resources for NLP, has not been updated for a long time, and as such a new project English WordNet has arisen to continue the development of the model under an open-source paradigm.
no code implementations • LREC 2020 • Alex Bento, re, Amal Zouaq, Michel Gagnon
In order to achieve interoperability of information in the context of the Semantic Web, it is necessary to find effective ways to align different ontologies.
no code implementations • LREC 2020 • Frederico Belcavello, Marcelo Viridiano, Alex Diniz da Costa, re, Ely Edison da Silva Matos, Tiago Timponi Torrent
Multimodal aspects of human communication are key in several applications of Natural Language Processing, such as Machine Translation and Natural Language Generation.
no code implementations • LREC 2020 • Thierry Etchegoyhen, Borja Anza Porras, Andoni Azpeitia, Eva Mart{\'\i}nez Garcia, Jos{\'e} Luis Fonseca, Patricia Fonseca, Paulo Vale, Jane Dunne, Federico Gaspari, Teresa Lynn, Helen McHugh, Andy Way, Victoria Arranz, Khalid Choukri, Herv{\'e} Pusset, Alex Sicard, re, Rui Neto, Maite Melero, David Perez, Ant{\'o}nio Branco, Ruben Branco, Lu{\'\i}s Gomes
We describe the European Language Resource Infrastructure (ELRI), a decentralised network to help collect, prepare and share language resources.
1 code implementation • ACL 2019 • Lea Frermann, Alex Klementiev, re
In addition to improvements in summarization over topic-agnostic baselines, we demonstrate the benefit of the learnt document structure: we show that our models (a) learn to accurately segment documents by aspect; (b) can leverage the structure to produce both abstractive and extractive aspect-based summaries; and (c) that structure is particularly advantageous for summarizing long documents.
no code implementations • JEPTALNRECITAL 2019 • Alex Arnold, re, G{\'e}rard Dupont, Catherine Kobus, Fran{\c{c}}ois Lancelot, Pooja Narayan
Dans cet article, nous pr{\'e}sentons une d{\'e}monstration de visualisation de l{'}information extraite automatiquement de la partie textuelle des NOTAMs.
1 code implementation • ACL 2019 • Alex Kabbach, re, Kristina Gulordava, Aur{\'e}lie Herbelot
In this paper, we investigate the task of learning word embeddings from very sparse data in an incremental, cognitively-plausible way.
no code implementations • JEPTALNRECITAL 2019 • Syrielle Montariol, Alex Allauzen, re
L{'}usage, le sens et la connotation des mots peuvent changer au cours du temps.
1 code implementation • SEMEVAL 2019 • Jean-Philippe Bernardy, Rasmus Blanck, Stergios Chatzikyriakidis, Shalom Lappin, Aleks Maskharashvili, re
We present BIS, a Bayesian Inference Semantics, for probabilistic reasoning in natural language.
1 code implementation • COLING 2018 • Alex Kabbach, re, Corentin Ribeyre, Aur{\'e}lie Herbelot
Knowing the state-of-the-art for a particular task is an essential component of any computational linguistics investigation.
no code implementations • COLING 2018 • Matthieu Labeau, Alex Allauzen, re
Noise-Contrastive Estimation (NCE) is a learning criterion that is regularly used to train neural language models in place of Maximum Likelihood Estimation, since it avoids the computational bottleneck caused by the output softmax.
no code implementations • JEPTALNRECITAL 2018 • Antoine Sainson, Hugo Linsenmaier, Alex Majed, re, Xavier Cadet, Abdessalam Bouchekif
Dans ce papier, nous d{\'e}crivons les syst{\`e}mes d{\'e}velopp{\'e}s au LSE pour le DEFT 2018 sur les t{\^a}ches 1 et 2 qui consistent {\`a} classifier des tweets.
no code implementations • JEPTALNRECITAL 2018 • Matthieu Labeau, Alex Allauzen, re
L{'}estimation contrastive bruit{\'e}e (NCE) et l{'}{\'e}chantillonage par importance (IS) sont des proc{\'e}dures d{'}entra{\^\i}nement bas{\'e}es sur l{'}{\'e}chantillonage, que l{'}on utilise habituellement {\`a} la place de l{'}estimation du maximum de vraisemblance (MLE) pour {\'e}viter le calcul du softmax lorsque l{'}on entra{\^\i}ne des mod{\`e}les de langue neuronaux.
no code implementations • JEPTALNRECITAL 2018 • Aina Gar{\'\i} Soler, Marianna Apidianaki, Alex Allauzen, re
Lexical complexity detection is an important step for automatic text simplification which serves to make informed lexical substitutions.
no code implementations • WS 2017 • Matthieu Labeau, Alex Allauzen, re
Most of neural language models use different kinds of embeddings for word prediction.
no code implementations • EMNLP 2017 • Cl{\'e}ment Gautrais, Peggy Cellier, Ren{\'e} Quiniou, Alex Termier, re
Highlighting the recurrence of topics usage in candidates speeches is a key feature to identify the main ideas of each candidate during a political campaign.
no code implementations • EMNLP 2017 • Daniel Hewlett, Llion Jones, Alex Lacoste, re, Izzeddin Gur
We also evaluate the model in a semi-supervised setting by downsampling the WikiReading training set to create increasingly smaller amounts of supervision, while leaving the full unlabeled document corpus to train a sequence autoencoder on document windows.
no code implementations • ACL 2017 • Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alex Lacoste, re, Jonathan Berant
We present a framework for question answering that can efficiently scale to longer documents while maintaining or even improving performance of state-of-the-art models.
no code implementations • JEPTALNRECITAL 2017 • Matthieu Labeau, Alex Allauzen, re
Les repr{\'e}sentations continues des mots sont calcul{\'e}es {\`a} la vol{\'e}e {\`a} partir des caract{\`e}res les composant, gr{\`a}ce {\`a} une couche convolutionnelle suivie d{'}une couche de regroupement (pooling).
no code implementations • JEPTALNRECITAL 2017 • {\'E}l{\'e}onor Bartenlian, Margot Lacour, Matthieu Labeau, Alex Allauzen, re, Guillaume Wisniewski, Fran{\c{c}}ois Yvon
Ce travail cherche {\`a} comprendre pourquoi les performances d{'}un analyseur morpho-syntaxiques chutent fortement lorsque celui-ci est utilis{\'e} sur des donn{\'e}es hors domaine.
no code implementations • EACL 2017 • Matthieu Labeau, Alex Allauzen, re
Noise Contrastive Estimation (NCE) is a learning procedure that is regularly used to train neural language models, since it avoids the computational bottleneck caused by the output softmax.
1 code implementation • COLING 2016 • Alex Kabbach, re, Corentin Ribeyre
This paper introduces Valencer: a RESTful API to search for annotated sentences matching a given combination of syntactic realizations of the arguments of a predicate {--} also called {`}valence pattern{'} {--} in the FrameNet database.
no code implementations • WS 2016 • Jan-Thorsten Peter, Tamer Alkhouli, Hermann Ney, Matthias Huck, Fabienne Braune, Alex Fraser, er, Ale{\v{s}} Tamchyna, Ond{\v{r}}ej Bojar, Barry Haddow, Rico Sennrich, Fr{\'e}d{\'e}ric Blain, Lucia Specia, Jan Niehues, Alex Waibel, Alex Allauzen, re, Lauriane Aufrant, Franck Burlot, Elena Knyazeva, Thomas Lavergne, Fran{\c{c}}ois Yvon, M{\=a}rcis Pinnis, Stella Frank
Ranked #12 on Machine Translation on WMT2016 English-Romanian
no code implementations • JEPTALNRECITAL 2016 • Kevin L{\"o}ser, Alex Allauzen, re
Cet article pr{\'e}sente un mod{\`e}le bay{\'e}sien non-param{\'e}trique pour la segmentation morphologique non supervis{\'e}e. Ce mod{\`e}le semi-markovien s{'}appuie sur des classes latentes de morph{\`e}mes afin de mod{\'e}liser les caract{\'e}ristiques morphotactiques du lexique, et son caract{\`e}re non-param{\'e}trique lui permet de s{'}adapter aux donn{\'e}es sans avoir {\`a} sp{\'e}cifier {\`a} l{'}avance l{'}inventaire des morph{\`e}mes ainsi que leurs classes.
no code implementations • JEPTALNRECITAL 2016 • Alex Hennequin, re, Am{\'e}lie Rochet-Capellan, Marion Dohen
Pour les deux locuteurs impliqu{\'e}s, l{'}intelligibilit{\'e} visuelle est n{\'e}anmoins {\'e}quivalente {\`a} celle des deux locuteurs ordinaires et compensent le d{\'e}ficit d{'}intelligibilit{\'e} auditive.
no code implementations • JEPTALNRECITAL 2016 • Mathieu Labrunie, Pierre Badin, Laurent Lamalle, Cori Vilain, re, Louis-Jean Bo{\"e}, Jens Frahm, Peter Birkholz
Nous pr{\'e}sentons une m{\'e}thode de pr{\'e}diction de contours m{\'e}diosagittaux des organes orofaciaux de la parole et la d{\'e}glutition {\`a} partir d{'}images IRM dynamiques.
no code implementations • JEPTALNRECITAL 2016 • Emmanuel Ferreira, Alex Reiffers-Masson, re, Bassam Jabaian, Fabrice Lef{\`e}vre
De nombreux modules de compr{\'e}hension de la parole ont en commun d{'}{\^e}tre probabilistes et bas{\'e}s sur des algorithmes d{'}apprentissage automatique.
no code implementations • NAACL 2016 • Paul Crook, Alex Marin, Vipul Agarwal, Khushboo Aggarwal, Tasos Anastasakos, Ravi Bikkula, Daniel Boies, Asli Celikyilmaz, Ch, Senthilkumar ramohan, Zhaleh Feizollahi, Roman Holenstein, Minwoo Jeong, Omar Khan, Young-Bum Kim, Elizabeth Krawczyk, Xiaohu Liu, Danko Panic, Vasiliy Radostev, Nikhil Ramesh, Jean-Phillipe Robichaud, Alex Rochette, re, Logan Stromberg, Ruhi Sarikaya
no code implementations • LREC 2016 • Fabricio Chalub, Livy Real, Alex Rademaker, re, Valeria de Paiva
This paper describes work on incorporating Princenton{'}s WordNet morphosemantics links to the fabric of the Portuguese OpenWordNet-PT.
1 code implementation • LREC 2016 • Alex B{\'e}rard, re, Christophe Servan, Olivier Pietquin, Laurent Besacier
We present MultiVec, a new toolkit for computing continuous representations for text at different granularity levels (word-level or sequences of words).
no code implementations • JEPTALNRECITAL 2015 • Quoc-Khanh Do, Alex Allauzen, re, Fran{\c{c}}ois Yvon
Alors que les r{\'e}seaux neuronaux occupent une place de plus en plus importante dans le traitement automatique des langues, les m{\'e}thodes d{'}apprentissage actuelles utilisent pour la plupart des crit{\`e}res qui sont d{\'e}corr{\'e}l{\'e}s de l{'}application.
no code implementations • JEPTALNRECITAL 2015 • Laurence Danlos, Aleks Maskharashvili, re, Sylvain Pogodalla
Cet encodage permet d{'}une part d{'}utiliser l{'}ordre sup{\'e}rieur pour l{'}interpr{\'e}tation s{\'e}mantique afin de construire des structures qui soient des DAG et non des arbres, et d{'}autre part d{'}utiliser les propri{\'e}t{\'e}s de composition d{'}ACG pour r{\'e}aliser naturellement l{'}interface entre grammaire phrastique et grammaire discursive.
no code implementations • JEPTALNRECITAL 2015 • Nicolas P{\'e}cheux, Alex Allauzen, re, Thomas Lavergne, Guillaume Wisniewski, Fran{\c{c}}ois Yvon
Quand on dispose de connaissances a priori sur les sorties possibles d{'}un probl{\`e}me d{'}{\'e}tiquetage, il semble souhaitable d{'}inclure cette information lors de l{'}apprentissage pour simplifier la t{\^a}che de mod{\'e}lisation et acc{\'e}l{\'e}rer les traitements.
no code implementations • JEPTALNRECITAL 2014 • Guillaume Wisniewski, Nicolas P{\'e}cheux, Elena Knyazeva, Alex Allauzen, re, Fran{\c{c}}ois Yvon
no code implementations • LREC 2014 • Valeria de Paiva, Livy Real, Alex Rademaker, re, Gerard de Melo
This paper presents NomLex-PT, a lexical resource describing Portuguese nominalizations.
no code implementations • JEPTALNRECITAL 2012 • Chloe Gonseth, Cori Vilain, re, Anne Vilain
no code implementations • JEPTALNRECITAL 2012 • Alex Labadi{\'e}, re, Patrice Enjalbert, St{\'e}phane Ferrari
no code implementations • JEPTALNRECITAL 2012 • Camille Cordeboeuf, Avril Treille, Cori Vilain, re, Marc Sato
no code implementations • JEPTALNRECITAL 2012 • Alex Denis, re, Matthieu Quignard, Dominique Fr{\'e}ard, Fran{\c{c}}oise D{\'e}tienne, Michael Baker, Flore Barcellini
no code implementations • JEPTALNRECITAL 2012 • Audrey Acher, Marc Sato, Laurent Lamalle, Alex Krainik, re, Pascal Perrier
no code implementations • LREC 2012 • Alex Denis, re, Ingrid Falk, Claire Gardent, Laura Perez-Beltrachini
There has been much debate, both theoretical and practical, on how to link ontologies and lexicons in natural language processing (NLP) applications.