Deep Reinforcement Learning

1654 papers with code • 0 benchmarks • 0 datasets

This task has no description! Would you like to contribute one?

Libraries

Use these libraries to find Deep Reinforcement Learning models and implementations
11 papers
3,198
9 papers
1,178
6 papers
628
See all 13 libraries.

Most implemented papers

Continuous control with deep reinforcement learning

ray-project/ray 9 Sep 2015

We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain.

Playing Atari with Deep Reinforcement Learning

labmlai/annotated_deep_learning_paper_implementations 19 Dec 2013

We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning.

Deep Reinforcement Learning with Double Q-learning

labmlai/annotated_deep_learning_paper_implementations 22 Sep 2015

The popular Q-learning algorithm is known to overestimate action values under certain conditions.

Dueling Network Architectures for Deep Reinforcement Learning

labmlai/annotated_deep_learning_paper_implementations 20 Nov 2015

In recent years there have been many successes of using deep representations in reinforcement learning.

Asynchronous Methods for Deep Reinforcement Learning

ray-project/ray 4 Feb 2016

We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers.

Rainbow: Combining Improvements in Deep Reinforcement Learning

thu-ml/tianshou 6 Oct 2017

The deep reinforcement learning community has made several independent improvements to the DQN algorithm.

A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem

ZhengyaoJiang/PGPortfolio 30 Jun 2017

They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market.

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

yaringal/DropoutUncertaintyExps 6 Jun 2015

In comparison, Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost.