Eeg Decoding
8 papers with code • 0 benchmarks • 1 datasets
Benchmarks
These leaderboards are used to track progress in Eeg Decoding
Most implemented papers
Deep learning with convolutional neural networks for EEG decoding and visualization
PLEASE READ AND CITE THE REVISED VERSION at Human Brain Mapping: http://onlinelibrary. wiley. com/doi/10. 1002/hbm. 23730/full Code available here: https://github. com/robintibor/braindecode
Decoding P300 Variability using Convolutional Neural Networks
Deep convolutional neural networks (CNN) have previously been shown to be useful tools for signal decoding and analysis in a variety of complex domains, such as image processing and speech recognition.
Subject-Aware Contrastive Learning for Biosignals
Datasets for biosignals, such as electroencephalogram (EEG) and electrocardiogram (ECG), often have noisy labels and have limited number of subjects (<100).
Decoding kinetic features of hand motor preparation from single‐trial EEG using convolutional neural networks
These results show that movement speed and force can be accurately predicted from single‐trial EEG, and that the prediction strategies may provide useful neurophysiological information about motor preparation.
Transformer-based Spatial-Temporal Feature Learning for EEG Decoding
As far as we know, it is the first time that a detailed and complete method based on the transformer idea has been proposed in this field.
Uncertainty Detection in EEG Neural Decoding Models
In this work, we proposed an uncertainty estimation model (UE-EEG) to explore the uncertainty during the EEG decoding process, which considers both the uncertainty in the input signal and the uncertainty in the model.
ExBrainable: An Open-Source GUI for CNN-based EEG Decoding and Model Interpretation
We have developed a graphic user interface (GUI), ExBrainable, dedicated to convolutional neural networks (CNN) model training and visualization in electroencephalography (EEG) decoding.
Physics-inform attention temporal convolutional network for EEG-based motor imagery classification
In this paper, we propose an attention-based temporal convolutional network (ATCNet) for EEG-based motor imagery classification.