Few-shot NER

35 papers with code • 4 benchmarks • 4 datasets

Few-Shot Named Entity Recognition (NER) is the task of recognising a 'named entity' like a person, organization, time and so on in a piece of text e.g. "Alan Mathison [person] visited the Turing Institute [organization] in June [time].

Most implemented papers

Few-NERD: A Few-Shot Named Entity Recognition Dataset

thunlp/Few-NERD ACL 2021

In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types.

Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition

liyongqi2002/TadNER 13 Feb 2023

Despite the recent success achieved by several two-stage prototypical networks in few-shot named entity recognition (NER) task, the overdetected false spans at the span detection stage and the inaccurate and unstable prototypes at the type classification stage remain to be challenging problems.

Learning In-context Learning for Named Entity Recognition

chen700564/metaner-icl 18 May 2023

M}$, and a new entity extractor can be implicitly constructed by applying new instruction and demonstrations to PLMs, i. e., $\mathcal{ (\lambda .

Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

asappresearch/structshot EMNLP 2020

We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference.

Template-Based Named Entity Recognition Using BART

Nealcly/templateNER Findings (ACL) 2021

To address the issue, we propose a template-based method for NER, treating NER as a language model ranking problem in a sequence-to-sequence framework, where original sentences and statement templates filled by candidate named entity span are regarded as the source sequence and the target sequence, respectively.

Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition

shuaiwa16/OtherClassNER ACL 2021

Few-shot Named Entity Recognition (NER) exploits only a handful of annotations to identify and classify named entity mentions.

Probing Pre-trained Auto-regressive Language Models for Named Entity Typing and Recognition

deezer/net-ner-probing LREC 2022

The results show: auto-regressive language models as meta-learners can perform NET and NER fairly well especially for regular or seen names; name irregularity when often present for a certain entity type can become an effective exploitable cue; names with words foreign to the model have the most negative impact on results; the model seems to rely more on name than context cues in few-shot NER.

CONTaiNER: Few-Shot Named Entity Recognition via Contrastive Learning

psunlpgroup/container ACL 2022

Named Entity Recognition (NER) in Few-Shot setting is imperative for entity tagging in low resource domains.

An Enhanced Span-based Decomposition Method for Few-Shot Sequence Labeling

wangpeiyi9979/esd NAACL 2022

Few-Shot Sequence Labeling (FSSL) is a canonical paradigm for the tagging models, e. g., named entity recognition and slot filling, to generalize on an emerging, resource-scarce domain.

Template-free Prompt Tuning for Few-shot NER

rtmaww/EntLM NAACL 2022

Prompt-based methods have been successfully applied in sentence-level few-shot learning tasks, mostly owing to the sophisticated design of templates and label words.