Browse > Graphs > Graph Classification

Graph Classification

69 papers with code · Graphs

Leaderboards

TREND DATASET BEST METHOD PAPER TITLE PAPER CODE COMPARE

Greatest papers with code

Fast Graph Representation Learning with PyTorch Geometric

6 Mar 2019rusty1s/pytorch_geometric

We introduce PyTorch Geometric, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch.

GRAPH CLASSIFICATION GRAPH REPRESENTATION LEARNING NODE CLASSIFICATION RELATIONAL REASONING

SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

CVPR 2018 rusty1s/pytorch_geometric

We present Spline-based Convolutional Neural Networks (SplineCNNs), a variant of deep neural networks for irregular structured and geometric input, e. g., graphs or meshes.

 SOTA for Node Classification on Cora (using extra training data)

GRAPH CLASSIFICATION NODE CLASSIFICATION

Semi-Supervised Classification with Graph Convolutional Networks

9 Sep 2016tkipf/gcn

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs.

DOCUMENT CLASSIFICATION GRAPH CLASSIFICATION GRAPH REGRESSION NODE CLASSIFICATION SKELETON BASED ACTION RECOGNITION

Structural Deep Network Embedding

KDD 2016 shenweichen/GraphEmbedding

Therefore, how to find a method that is able to effectively capture the highly non-linear network structure and preserve the global and local structure is an open yet important problem.

GRAPH CLASSIFICATION LINK PREDICTION NETWORK EMBEDDING

Gated Graph Sequence Neural Networks

17 Nov 2015Microsoft/gated-graph-neural-network-samples

Graph-structured data appears frequently in domains including chemistry, natural language semantics, social networks, and knowledge bases.

DRUG DISCOVERY GRAPH CLASSIFICATION NODE CLASSIFICATION SQL-TO-TEXT

Capsule Graph Neural Network

ICLR 2019 benedekrozemberczki/CapsGNN

The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance.

GRAPH CLASSIFICATION

graph2vec: Learning Distributed Representations of Graphs

17 Jul 2017benedekrozemberczki/graph2vec

Recent works on representation learning for graph structured data predominantly focus on learning distributed representations of graph substructures such as nodes and subgraphs.

GRAPH CLASSIFICATION GRAPH EMBEDDING GRAPH MATCHING

How Powerful are Graph Neural Networks?

ICLR 2019 weihua916/powerful-gnns

Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures.

GRAPH CLASSIFICATION GRAPH REPRESENTATION LEARNING

GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features

ICONIP 2019 2020 benedekrozemberczki/karateclub

Specifically, it complements either the edge label information or the structural information which Graph2vec misses with the embeddings of the line graphs.

GRAPH CLASSIFICATION GRAPH EMBEDDING